Effect of Temperature on the Interfacial Bonding Strength between PVB and Glass from RT to -50 °C

2011 ◽  
Vol 492 ◽  
pp. 61-65 ◽  
Author(s):  
Yuan Tian ◽  
Yi Wang Bao ◽  
De Tian Wan ◽  
Xiu Fang Wang ◽  
Zhi Ming Han

Laminated glass and photovoltaic laminated glass are widely used in architecture. The interfacial bonding strengths between poly(vinyl butyral) (PVB) and glass were investigated by the cross-bonding method from room temperature to -50 °C. The loading speed was 5 mm/min, and the cooling speed was about 0.5 °C/min. The testing sample was hold at each temperature for half an hour. It was revealed that the testing temperature had great effect on the bonding strength. At room temperature, the tensile bonding strength was 11.49 MPa and the shear bonding strength was 6.61 MPa. With the temperature decreased from RT to -50 °C, the tensile bonding strength was decreased by 66.81%, but the shear bonding strength was increased by 212.16%. From RT to -30 °C, the change rates of the tensile and shear bonding strength bonding strength were 65.57% and 172.68% respectively, only 3.61% and 14.48% from -30 °C to -50 °C. The mechanism for the bonding strength depended on testing temperatures from RT to -50 °C was also discussed.

2013 ◽  
Vol 544 ◽  
pp. 321-325
Author(s):  
De Tian Wan ◽  
Yi Wang Bao ◽  
Xiao Gen Liu ◽  
Yuan Tian ◽  
Run Run Li

Ti3SiC2-Al2O3joint with strong interface has potential high temperature applications because it combines with the merits of hard ceramics and soft ceramics. The safety is strongly dependent on the interfacial bonding strength between Ti3SiC2and Al2O3. In this work, the cross-section method was suggested to evaluate the tensile and shear bonding strength for Ti3SiC2-Al2O3joint from room temperature to 800 °C in air. A novel testing fixture made of SiC was designed and machined to avoid the bending stress at the bonding surface during the testing process. It is indicated that the measured shear bonding strength is usually higher than tensile bonding strength for Ti3SiC2-Al2O3joint. Both the tensile and shear bonding strength are decreased with the increment of testing temperatures. At 800 °C, the tensile and shear bonding strength are declined to be about 43.15% and 45.02% compared with those at room temperature, relatively. The mechanism for the strong interface between Ti3SiC2and Al2O3is also discussed.


2014 ◽  
Vol 989-994 ◽  
pp. 177-180
Author(s):  
Hao Yang ◽  
Jian Hua Zhang ◽  
Guo Yan Sun ◽  
Yi Zhang

For the characteristic that the mechanical properties of resin composite are lower than cast iron, steel fibers are used to improve its properties in this paper. A weak interfacial bonding strength between steel fibers and resin indicates that steel fibers’ property cannot perform well in the polymer. In order to improve the interfacial bonding strength, four methods of surface treatment, phosphating, acid pickling, oxidation, and coupling are applied to steel fibers, and the corresponding pull-off tests are carried out to compare with untreated steel fibers. Research results show that the maximum interfacial bonding strength is increased by 45.1% after coupling treatment.


2022 ◽  
Vol 148 ◽  
pp. 107699
Author(s):  
M.H. Nie ◽  
S. Zhang ◽  
Z.Y. Wang ◽  
H.F. Zhang ◽  
C.H. Zhang ◽  
...  

2006 ◽  
Vol 55 (11) ◽  
pp. 6008
Author(s):  
Zhang Yong-Kang ◽  
Kong De-Jun ◽  
Feng Ai-Xin ◽  
Lu Jin-Zhong ◽  
Ge Tao

Sign in / Sign up

Export Citation Format

Share Document