Surface Integrity and Fatigue Strength of Hard Milled Surfaces

Author(s):  
W. Li ◽  
Y. B. Guo ◽  
M. E. Barkey ◽  
C. Guo ◽  
Z. Q. Liu

Tool flank wear during hard milling adversely affects surface integrity and, therefore, fatigue strength of machined components. Surface integrity and machining accuracy deteriorate when tool wear progresses. In this paper, surface integrity and its impact on endurance limit of AISI H13 tool steel (50 ± 1 HRC) by milling using PVD coated tools are studied. The evolutions of surface integrity including surface roughness, microhardness and microstructure were characterized at three levels of tool flank wear (VB = 0, 0.1mm, 0.2mm). At each level of tool flank wear, the effects of cutting speed, feed, and radial depth-of-cut on surface integrity were investigated respectively. Fatigue endurance limits of the machined surfaces at different reliability levels were calculated and correlated with the experimentally determined fatigue life. The good surface finish and significant strain-hardening on the machined surfaces enhance endurance limit, which enables machined components have a fatigue life over 106 cycles.

Author(s):  
W. Li ◽  
Y. B. Guo ◽  
M. E. Barkey

In machining, the interfacial friction between cutting tool and work material leads to tool wear which is considered a critical factor for surface quality of machined components. Surface integrity and fatigue life of machined components will deteriorate when tool flank wear progresses in machining. Hard milling experiments on AISI H13 tool steel (50 ± 1 HRC) using PVD coated tools with different levels of flank wear were conducted in this study. Surface integrity of the machined components with flank wear VB = 0 mm, 0.1 mm and 0.2 mm was characterized. The effects of cutting speed, feed, and radial depth-of-cut on surface integrity were investigated respectively at the three levels of tool flank wear. In addition, four-point bending fatigue tests were performed on the milled samples at five levels of different flank wear (VB = 0, 0.05, 0.10, 0.15, 0.20 mm) to evaluate the trend of fatigue life evolution with the increased tool flank wear.


Author(s):  
W. Li ◽  
Y. B. Guo

Interfacial friction between cutting tool and work material leads to tool wear during machining, which adversely affects surface integrity of machined components. In addition, more energy is expected to be consumed to accommodate higher loading during machining. Dimensional accuracy and repeatability of the workpiece is also hard to guarantee when machining with worn tools. In this paper, surface integrity of AISI H13 samples milled using the PVD coated inserts is studied. Three levels of tool flank wear (VB = 0, 0.1mm, 0.2mm) were used to cut H13 tool steel in the experiment. At each level of flank wear, the effects of cutting speed, feed, and radial depth-of-cut on surface integrity were investigated respectively. Under a diverse combination of milling parameters, the evolution of surface integrity with tool flank wear was analyzed. A novel on-line optical tool inspection system integrated with CNC machining center was used to inspect the evolution of flank wear with milling time in order to monitor tool wear conditions.


Author(s):  
W. Li ◽  
Y. B. Guo

Dry machining is a cluster of sustainable manufacturing processes to eliminate the negative environmental effect of machining coolants. It is critical to ensure that product quality cannot be sacrificed for achieving sustainability. The progress of tool flank wear during hard milling adversely affects surface integrity and, therefore, fatigue life of machined components. This paper focuses on the influence of tool flank wear on residual stress and fatigue properties in dry end milling AISI H13 tool steel (50 ± 1 HRC) using PVD coated tools. The effects of flank wear (VB = 0, 0.1, and 0.2 mm) on residual stresses at three different feeds were studied. Four-point bending fatigue tests were performed on the samples machined at five levels of tool flank wears (VB = 0, 0.05, 0.10, 0.15, 0.20 mm) and surface fatigue initiations of the fatigued samples were identified by the fractographic method.


2021 ◽  
Author(s):  
Liang Tan ◽  
Changfeng Yao ◽  
Dinghua Zhang ◽  
Minchao Cui ◽  
Xuehong Shen

Abstract This paper investigates the effects of tool wear on the machined surface integrity characteristics, including the surface roughness, surface topography, residual stress, microhardness and microstructure, during ball-end milling of Inconel 718. Tool wear, tool lifetime, and cutting force are measured. In addition, a two-dimensional finite element-based model is developed to investigate the cutting temperature distribution in the chip–tool–workpiece contact area. Results show that the ball nose end mill achieves tool lifetime of approximately 350 min. The cutting forces increase sharply with a greater tool flank wear width, while the highest cutting temperature has a decreasing tend at a flank wear width of 0.3 mm. Higher tool flank wear width produces larger surface roughness and deteriorative surface topography. A high-amplitude (approximately −700 MPa) and deep layer (approximately 120 mm) of compressive residual stress are induced by a worn tool with 0.3 mm flank wear width. The surface microhardness induced by new tool is larger than that induced by worn tool. Plastic deformation and strain streamlines are observed within 10 mm depth beneath the surface. The results in this paper provide an optimal tool wear criterion which integrates the surface integrity requirements and the tool lifetime for ball-end finish milling of Inconel 718.


2010 ◽  
Vol 431-432 ◽  
pp. 338-341
Author(s):  
Hai Tao Liu ◽  
Ya Zhou Sun ◽  
Ze Sheng Lu

Deformation caused by residual stress has been one of the main reasons influencing the machining accuracy, studies on machining residual stress should be performed. The tool flank wear on the cutting process has great influence on cutting heat which will infulence the distribution of residual stress, therefore,we should do the finite element simulation of cutting tool flank wear on the heat-affected firstly,then simulate and forecast the surface residual stress, studies on the effect of tool flank wear on the distribution of machined surface residual stress Johnson-Cook’s coupled thermal-mechanical model is used as workpiece material model, thermal-displacement coupled brick are used to mesh, while friction between tool and work piece uses modified Coulomb's law whose slide friction area is combined with sticking friction. By means of FEA, residual stress on the machined surface and cutting temperature under different tool flank wear conditions are obtained. The results are compared and analyzed, and then we can get the fundamental influencing law on machined surface residual stress of tool flank wear.


Author(s):  
Alexandra Lacombe ◽  
Yann Landon ◽  
Manuel Paredes ◽  
Clément Chirol ◽  
Audrey Benaben

AbstractFatigue strengths of aluminium 2024-T351 open-hole specimens drilled by axial and orbital drilling processes are compared. Two drilling diameters (Ø) are studied: 6.35 mm and 9.53 mm. Surface integrity characterization tests are conducted in order to study the link between drilling processes, surface integrity and fatigue life. Fatigue test results show an increase of the fatigue life for specimens drilled by axial drilling for Ø = 9.53 mm and no significant difference in fatigue life between the two drilling processes for Ø = 6.35 mm. Surface integrity results show no impact of the roughness on the fatigue strength but a potential positive influence of the hole microhardness on the fatigue life.


2012 ◽  
Vol 723 ◽  
pp. 182-187
Author(s):  
Jin Du ◽  
Zhan Qiang Liu

Tool flank wear has the significant effects on machined surface integrity. The influences of tool flank wear on the cutting forces, surface roughness, microhardness and white layer thickness are investigated in this paper through orthogonal milling experiments. FGH95 powder metallurgy (PM) superalloys are machined with coated cemented carbide tools in the milling experiments. The experiment results show that with the increasing of tool flank wear, cutting force, surface roughness and white layer thickness increase. However, the machined surfaces micro-hardness aggravates with the increase of tool flank wear. It is found that, the machined surface roughness, micro-hardness and white layer increase dramatically especially when the tool flank wear exceeds 0.3mm. A conclusion is then be drawn that, the maximum acceptable tool flank wear land is 0.3mm from the view point of surface integrity when FGH95 PM superalloy is machined with coated cemented carbide tools.


Sign in / Sign up

Export Citation Format

Share Document