Finite Element Simulation of Residual Stress on the Surface in the Cutting Considering Tool Flank Wear

2010 ◽  
Vol 431-432 ◽  
pp. 338-341
Author(s):  
Hai Tao Liu ◽  
Ya Zhou Sun ◽  
Ze Sheng Lu

Deformation caused by residual stress has been one of the main reasons influencing the machining accuracy, studies on machining residual stress should be performed. The tool flank wear on the cutting process has great influence on cutting heat which will infulence the distribution of residual stress, therefore,we should do the finite element simulation of cutting tool flank wear on the heat-affected firstly,then simulate and forecast the surface residual stress, studies on the effect of tool flank wear on the distribution of machined surface residual stress Johnson-Cook’s coupled thermal-mechanical model is used as workpiece material model, thermal-displacement coupled brick are used to mesh, while friction between tool and work piece uses modified Coulomb's law whose slide friction area is combined with sticking friction. By means of FEA, residual stress on the machined surface and cutting temperature under different tool flank wear conditions are obtained. The results are compared and analyzed, and then we can get the fundamental influencing law on machined surface residual stress of tool flank wear.

2014 ◽  
Vol 800-801 ◽  
pp. 305-310
Author(s):  
Yong Chun Zheng ◽  
Er Liang Liu ◽  
Jiao Li ◽  
Hong Yan Ju ◽  
Li Guo Zhao

The research focused on the finite element simulation of the surface residual stress and took an experiment to get cutting temperature and cutting force by changing different groove and coated tools. Then it analyzed the influence of cutting and tool parameters on cutting force and temperature. Finally, the results reached a conclusion about the way that the tools with different groove and coating influenced the residual stress. The coated tools reduced the residual tensile stress in the machined surface. The axial and tangential residual stress was tensile stress and the tangential residual stress was larger than the axial in machining.


2011 ◽  
Vol 308-310 ◽  
pp. 1198-1204
Author(s):  
Hui Xian Chen ◽  
Hao Li ◽  
Hai Tao Feng ◽  
Min Juan Du

The leaf blade manufacture precision's influencing factors are numerous, and they have coupling relationship each other. So it is difficult to peel out a single factor on the influencing regularity of the blade's machining accuracy. By researching the engine blades of helical milling state under the existing fixture, the leaf blade deformable model based on the instantaneous milling strength was established. Meanwhile, the off-line multi-level error compensation plan was proposed based on the processing surface static error forecasts and compensation. In order to revise the primitive NC tool path code and eliminate the processing distortion inaccuracy, the elastic deformity on each knife position spot is solved on the basis of iterative solution, using the finite element simulation and milling strength model. By using ANSYS finite element simulation, it receives the real-time error compensation of the tool path. And then The experiment has proven the accuracy and the usability of the compensation plan.


2008 ◽  
Vol 375-376 ◽  
pp. 480-484 ◽  
Author(s):  
Guang Xiu Zhang ◽  
Bin Lin ◽  
Zhen Peng Shi

The generation and distribution of workpiece surface and sub-surface residual stress were predicted through the dynamic finite element simulation of the grinding ceramic process. The base of the simulation is that the thermo elastic-plastic finite element theory and the coupling of grinding forces and temperature were adopted. The results obtained from X-ray diffraction measurement compared well with the values calculated from theory. The correlation between grinding parameters and the ceramic residual stresses was investigated. The research results show that the normal grinding force is the primary factor responsible for the generation of residual stress in grinding ceramic. The mechanical effect of the grains is to affect the magnitude, the depth of penetration and the gradient of the residual stresses.


1992 ◽  
Vol 114 (4) ◽  
pp. 441-451 ◽  
Author(s):  
S. Brown ◽  
H. Song

Current simulations of welding distortion and residual stress have considered only the local weld zone. A large elastic structure surrounding a weld, however, can couple with the welding operation to produce a final weld state much different from that resulting when a smaller structure is welded. The effect of this coupling between structure and weld has the potential of dominating the final weld distortion and residual stress state. This paper employs both two-and three-dimensional finite element models of a circular cylinder and stiffening ring structure to investigate the interaction of a large structure on weld parameters such as weld gap clearance (fitup) and fixturing. The finite element simulation considers the full thermo-mechanical problem, uncoupling the thermal from the mechanical analysis. The thermal analysis uses temperature-dependent material properties, including latent heat and nonlinear heat convection and radiation boundary conditions. The mechanical analysis uses a thermal-elastic-plastic constitutive model and an element “birth” procedure to simulate the deposition of weld material. The effect of variations of weld gap clearance, fixture positions, and fixture types on residual stress states and distortion are examined. The results of these analyses indicate that this coupling effect with the surrounding structure should be included in numerical simulations of welding processes, and that full three-dimensional models are essential in predicting welding distortion. Elastic coupling with the surrounding structure, weld fitup, and fixturing are found to control residual stresses, creating substantial variations in highest principal and hydrostatic stresses in the weld region. The position and type of fixture are shown to be primary determinants of weld distortion.


2013 ◽  
Vol 278-280 ◽  
pp. 278-281 ◽  
Author(s):  
Ming Yao ◽  
Liang Wang

The structure and working principle of permanent magnetic brake were introduced and the main factors of influencing braking ability of the permanent magnetic brake were analyzed with theory formula. By using of software as Ansoft, an finite element simulation model for magnetic brake were built up, and compare simulate value with theoretical one express that they have better consistency. Based on the simulation model, influencing factors of the braking force about permanent magnetic brake were analyzed, and the simulate results express that the height of gap between brake and track has a great influence on the braking force, so it must pay much more attention on brake design.


Sign in / Sign up

Export Citation Format

Share Document