Cradle-to-Grave Life Cycle Assessment of Solid-State Perovskite Solar Cells

Author(s):  
Jingyi Zhang ◽  
Xianfeng Gao ◽  
Yelin Deng ◽  
Yuanchun Zha ◽  
Chris Yuan

With the advantages of low cost and high conversion efficiency, perovskite solar cell attracts enormous attention in recent years for research and development. However, the toxicity potential of lead used in perovskite solar cell manufacturing causes grave concern for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell, a comprehensive life cycle assessment has been conducted by using attributional life cycle assessment approach from cradle to grave, with manufacturing data from our lab experiments and literature. The results indicate that the major environmental problem is associated with system manufacturing, including gold cathode, organic solvent usage and recycling, and electricity utilization in component manufacturing process. Lead only contributes less than 1% of human toxicity and ecotoxicity potentials in the whole life cycle, which can be explained by the small amount usage of lead in perovskite dye preparation. More importantly, the uncertainties caused by life cycle inventory have been investigated in this study to show the importance of primary data source. In addition, a comparison of perovskite solar cell with conventional solar cells and other dye sensitized solar cells shows that perovskite solar cell could be a promising alternative technology for future clean power generations.

2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35831-35839 ◽  
Author(s):  
Mustafa K. A. Mohammed

Carbon-based perovskite solar cells (C-PSCs) are the most promising photovoltaic (PV) due to their low material and manufacturing cost and superior long-term stability.


2020 ◽  
Vol 14 ◽  

T Perovskite solar cells are becoming a dominant alternative for the traditional solar cells reaching an efficiency of 25.2% in a short span of twelve years (2008-2020). Here, we are going to describe a simple process to 'put a voice on a laser beam' and transmit it over a distance via a perovskite solar cell. This process considered as a fascinating example of amplitude modulation of light using sound vibrations. Therefore, the design and simulation of the perovskite solar cell will be described in details in this work. This design is concerned about the lead-free based perovskite solar cell model with the total proposed structure “Metal contact /PEDOT:PSS/ CH3NH3SnI3/ ZnO/ SnO2:F/ Metal contact”. To study the efficiency and the performances of a solar cell, the use of well-known software so-called SCAPS-1D is undertaken to perform the system simulation. The obtained results show also the influence of the doping level of the HTM layer and absorber layer thickness on the performance of the device. So far, only the simulation part has been validated. Despite the costeffect of the system prototype, however, it could be implemented here in the laboratory as perspective work.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Jeongmin Lim ◽  
Seong Young Kong ◽  
Yong Ju Yun

Inorganic-organic mesoscopic solar cells become a promising alternative for conventional solar cells. We describe a CH3NH3PbI3 perovskite-sensitized solid-state solar cells with the use of different polymer hole transport materials such as 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-OMeTAD), poly(3-hexylthiophene-2,5-diyl) (P3HT), and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7). The device with a spiro-OMeTAD-based hole transport layer showed the highest efficiency of 6.9%. Interestingly, the PTB7 polymer, which is considered an electron donor material, showed dominant hole transport behaviors in the perovskite solar cell. A 200 nm thin layer of PTB7 showed comparatively good efficiency (5.5%) value to the conventional spiro-OMeTAD-based device.


Author(s):  
Lei Zhang ◽  
Mu He

Abstract Despite the significant advancement of the data-driven studies for physical science, the textual data that are numerous in the literature are not fully embraced by the physics and materials community. In this manuscript, we successfully employ the natural language processing (NLP) technique to unsupervisedly predict the existence of solar cell types including the dye-sensitized solar cells and the perovskite solar cells based on literatures published prior to their first discovery without human annotation. Enlightened by this, we further identify possible solar cell material candidates via NLP starting with a comprehensive training database of 3.2 million paper abstracts published before 2021. The NLP model effectively predicts the existing solar cell materials, while an uncommon solar cell material namely PtSe2 is suggested as an appropriate candidate for the future solar cells. Its optoelectronic properties are comprehensive investigated via first-principles calculations to reveal the decent stability and optoelectronic performance of the NLP-predicted candidate. This study demonstrates the viability of the textual data for the data-driven materials prediction and highlights the NLP method as a powerful tool to reliably predict the solar cell materials.


2021 ◽  
Vol 34 (1) ◽  
pp. 01-08
Author(s):  
B GopalKrishna ◽  
Sanjay Tiwari

Perovskite solar cells are emerging photovoltaic devices with PCE of above 25%. Perovskite are suitable light absorber materials in solar cells with excellent properties like appropriate band gap energy, long carrier lifetime and diffusion length, and high extinction coefficient. Simulation study is an important technique to understand working mechanisms of perovskites solar cells. The study would help develop efficient, stable PSCs experimentally. In this study, modeling of perovskite solar cell was carried out through Setfos software. The optimization of different parameters of layer structure of solar cell would help to achieve maximum light absorption in the perovskite layer of solar cell. Simulation study is based drift-diffusion model to study the different parameters of perovskite solar cell. Hysteresis is one of the factors in the perovskite solar cell which may influence the device performance. The measurement of abnormal hysteresis can be done by current-voltage curve during backward scan during simulation study. In backward scan, the measurement starts from biasing voltage higher than open circuit voltage and sweep to voltage below zero. The numerical simulation used to study the various parameters like open circuit voltage, short circuit current, fill factor, power conversion efficiency and hysteresis. The simulation results would help to understand the photophysics of solar cell physics which would help to fabricate highly efficient and stable perovskite solar cells experimentally.


RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34152-34157 ◽  
Author(s):  
Junmei Cao ◽  
Fanning Meng ◽  
Liguo Gao ◽  
Shuzhang Yang ◽  
Yeling Yan ◽  
...  

The 2D Mxene material was successfully used as the counter electrode of the perovskite solar cell and achieved power conversion efficiencies of 13.84%.


2019 ◽  
Vol 7 (38) ◽  
pp. 21730-21739 ◽  
Author(s):  
Tun Wang ◽  
Zhendong Cheng ◽  
Yulin Zhou ◽  
Hong Liu ◽  
Wenzhong Shen

An inverted perovskite solar cell bilaterally passivated by polystyrene exhibits an efficiency of 19.99% with a high VOC of 1.149 V.


Sign in / Sign up

Export Citation Format

Share Document