Printing Free-Form Free-Standing Glass Structures

Author(s):  
Bret Curtis ◽  
Daniel Peters ◽  
John Hostetler ◽  
Robert Landers ◽  
Douglas Bristow ◽  
...  

Transparent, bubble-free glass structures can be printed using a filament-fed, laser-heated additive manufacturing process. In this process, a stationary CO2 laser beam is focused at the intersection of the filament and workpiece to locally heat the glass above its working temperature. Glass enters the molten region and is deposited on the workpiece as the workpiece is translated/rotated using a 4-axis stage. This paper studies creating free-form, free-standing objects which is facilitated by the glass rapidly achieving structural rigidity as it cools upon exiting the molten region. The effects of the process parameters and printing techniques are examined and optimized to print simple wall and truss structures.

2021 ◽  
Vol 5 (5) ◽  
pp. 119
Author(s):  
Stelios K. Georgantzinos ◽  
Georgios I. Giannopoulos ◽  
Panteleimon A. Bakalis

This paper aims to establish six-dimensional (6D) printing as a new branch of additive manufacturing investigating its benefits, advantages as well as possible limitations concerning the design and manufacturing of effective smart structures. The concept of 6D printing, to the authors’ best knowledge, is introduced for the first time. The new method combines the four-dimensional (4D) and five-dimensional (5D) printing techniques. This means that the printing process is going to use five degrees of freedom for creating the final object while the final produced material component will be a smart/intelligent one (i.e., will be capable of changing its shape or properties due to its interaction with an environmental stimulus). A 6D printed structure can be stronger and more effective than a corresponding 4D printed structure, can be manufactured using less material, can perform movements by being exposed to an external stimulus through an interaction mechanism, and it may learn how to reconfigure itself suitably, based on predictions via mathematical modeling and simulations.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3149
Author(s):  
Angelika Zaszczyńska ◽  
Maryla Moczulska-Heljak ◽  
Arkadiusz Gradys ◽  
Paweł Sajkiewicz

Tissue engineering (TE) scaffolds have enormous significance for the possibility of regeneration of complex tissue structures or even whole organs. Three-dimensional (3D) printing techniques allow fabricating TE scaffolds, having an extremely complex structure, in a repeatable and precise manner. Moreover, they enable the easy application of computer-assisted methods to TE scaffold design. The latest additive manufacturing techniques open up opportunities not otherwise available. This study aimed to summarize the state-of-art field of 3D printing techniques in applications for tissue engineering with a focus on the latest advancements. The following topics are discussed: systematics of the available 3D printing techniques applied for TE scaffold fabrication; overview of 3D printable biomaterials and advancements in 3D-printing-assisted tissue engineering.


2015 ◽  
Vol 6 (2) ◽  
pp. 63-86
Author(s):  
Dipesh Dhital ◽  
Yvonne Ziegler

Additive Manufacturing also known as 3D Printing is a process whereby a real object of virtually any shape can be created layer by layer from a Computer Aided Design (CAD) model. As opposed to the conventional Subtractive Manufacturing that uses cutting, drilling, milling, welding etc., 3D printing is a free-form fabrication process and does not require any of these processes. The 3D printed parts are lighter, require short lead times, less material and reduce environmental footprint of the manufacturing process; and is thus beneficial to the aerospace industry that pursues improvement in aircraft efficiency, fuel saving and reduction in air pollution. Additionally, 3D printing technology allows for creating geometries that would be impossible to make using moulds and the Subtractive Manufacturing of drilling/milling. 3D printing technology also has the potential to re-localize manufacturing as it allows for the production of products at the particular location, as and when required; and eliminates the need for shipping and warehousing of final products.


2018 ◽  
Vol 188 ◽  
pp. 03020
Author(s):  
Antonios Tsakiris ◽  
Christos Salpistis ◽  
Athanassios Mihailidis

Additive Manufacturing (AM) has been widely considered a key factor for innovative design. However, the utilization of AM has not been as high as expected, although the technology offers key innovative design capabilities, weight reduction, parts count and assembly consolidation as well as material saving. This low utilization is attributed to the lack of AM understanding, mature CAE/CAM software tools addressing AM specific issues such as design support structure generation and removal, residual stresses, surface quality. In most cases, Design for AM (DfAM) is a crucial requisite for a “Design Right Once” approach. Such an approach is shown in the current study using three parts as example: an arthropod’s leg, a gearshift drum and an electric motor mounting frame. The implementation of geometrical conformal lattice structures and lattices with variable density are discussed. A structured design approach is presented and design dilemmas are solved in terms of a DfAM approach. Primary design optimizations are evaluated. Weight reduction is considered throughout the design and free form surfaces are being used. “Freedom to Design” principle is also portrayed and assembly parts consolidation occurs as a natural process of DfAM in comparison with previous design practices. It is concluded that, even from the primary design phase the design engineer can reveal his creativity because of the absence of constraints set by the traditional manufacturing technologies.


Author(s):  
Matthias Bordron ◽  
Charyar Mehdi-Souzani ◽  
Olivier Bruneau

Additive manufacturing takes a growing place in industry tanks to its ability to create free-form parts with internal complex shape. Yet, the quality of the final surfaces of the additive manufacturing parts is still a challenge since it doesn’t reach the required level for final use. To address this issue, it is necessary to measure the form and dimension deviation in order to plan post-process operations to be considerate. Moreover in a context of industry 4.0, this measurement step should be fully integrated into the manufacturing line as close as possible to the additive manufacturing process and post-process. We introduce in this article an inline measurement solution based on a robot combined with a laser sensor. Robot allows reaching most of the orientation and positions necessary to digitize complex parts in a short time. The use of robot for digitizing is already addressed but not for metrological applications. Robots are perfectly designed for velocity, ability and robustness but their poor positioning accuracy is not compatible with measuring requirements. The strategy adopted in this article is to provide an algorithm to generate path planning for digitizing additive manufacturing parts at a given quality of the resulting cloud of points. After a discussion about the geometric and elastic model of the robot to identify the one that answers the quality requirements, the performances of the robot are evaluated. Thus, several performances maps are introduced to characterize the behavior of the robot in its working volume. The qualification of the digitizing sensor is also performed to identify relation between digitizing parameters and the quality of final cloud of points. Using data resulting from the qualifications of sensor and robot and the parts CAD model, the algorithm allows generating path planning to ensure the final quality necessary to measure the shape deviation.


2020 ◽  
Vol 32 ◽  
pp. 101003 ◽  
Author(s):  
Prahar M. Bhatt ◽  
Rishi K. Malhan ◽  
Pradeep Rajendran ◽  
Satyandra K. Gupta

Author(s):  
Junjie Luo ◽  
John M. Hostetler ◽  
Douglas A. Bristow ◽  
Robert G. Landers ◽  
Edward C. Kinzel ◽  
...  

The temperature in the molten region is a critical parameter for Additive Manufacturing (AM) of transparent glass using a laser heated filament-fed processing. This paper presents a study of the heat transfer in single track printing of borosilicate glass using the filament-fed process. The incandescent radiation emitted from the melt pool is monitored using a spectrometer. The spectral data indicates the breakdown of materials occurring inside of the glass, and reflects the occurrence of bubble formation due to reboil at high temperatures. A simple numerical model of the filament-fed process based on an energy balance within the melt pool is used to estimate the temperature. By combining the numerical and experimental results, the estimated temperature calculated from this model is suitable for control feedback.


2021 ◽  
Vol 11 (16) ◽  
pp. 7336
Author(s):  
Shummaila Rasheed ◽  
Waqas Akbar Lughmani ◽  
Muhannad Ahmed Obeidi ◽  
Dermot Brabazon ◽  
Inam Ul Ahad

In this study, the printing capability of two different additive manufacturing (3D printing) techniques, namely PolyJet and micro-stereolithography (µSLA), are investigated regarding the fabrication of bone scaffolds. The 3D-printed scaffold structures are used as supports in replacing and repairing fractured bone tissue. Printed bone scaffolds with complex structures produced using additive manufacturing technology can mimic the mechanical properties of natural human bone, providing lightweight structures with modifiable porosity levels. In this study, 3D scaffold structures are designed with different combinations of architectural parameters. The dimensional accuracy, permeability, and mechanical properties of complex 3D-printed scaffold structures are analyzed to compare the advantages and drawbacks associated with the two techniques. The fluid flow rates through the 3D-printed scaffold structures are measured and Darcy’s law is applied to calculate the experimentally measured permeability. The Kozeny–Carman equation is applied for theoretical calculation of permeability. Compression tests were performed on the printed samples to observe the effects of the printing techniques on the mechanical properties of the 3D-printed scaffold structures. The effect of the printing direction on the mechanical properties of the 3D-printed scaffold structures is also analyzed. The scaffold structures printed with the µSLA printer demonstrate higher permeability and mechanical properties as compared to those printed using the PolyJet technique. It is demonstrated that both the µSLA and PolyJet printing techniques can be used to print 3D scaffold structures with controlled porosity levels, providing permeability in a similar range to human bone.


2021 ◽  
Author(s):  
Ziping Yu ◽  
Zengxi Pan ◽  
Donghong Ding ◽  
Joseph Polden ◽  
Lei Yuan ◽  
...  

Abstract Wire Arc Additive Manufacturing (WAAM) is well suited for the manufacture of sizeable metallic workpieces featuring medium-to-high geometrical complexity due to its high deposition rate, low processing conditions limit, and environmental friendliness. To enhance the current capability of the WAAM process for fabricating structures with complex geometry, this paper proposes a robot-based WAAM strategy adapted specifically for fabricating free-form parts with wire structures composed of multiple struts. Contributions in this work include: (i) The study of bead modelling, which establishes optimal welding parameter selection for the process; (ii) The novel manufacturing strategy, including the adaptive slicing methodology and height control system for accurately depositing every single strut; (iii) Detailed manufacturing procedures for multi-strut branch intersections as well as the collision-free path planning to control the overall fabrication process. To verify the effectiveness of this proposed WAAM approach, two complex wire structures were fabricated successfully, indicating the feasibility of the proposed fabrication strategy.


Sign in / Sign up

Export Citation Format

Share Document