Evaluation of Methods and Protocols for Operation of a CERMS at a Municipal Waste Combustor

Author(s):  
Mark Arienti ◽  
Jeffrey R. Harrington

Regional Waste Systems (RWS) evaluated protocols and methods for operation of a continuous emission rate monitoring system (CERMS) for its municipal waste combustor (MWC) located in Portland, Maine. This continuous measurement of mass emissions (lb/hr) would be in addition to the existing continuous monitoring of the concentration (ppm) of NOx, SO2, and CO emissions using a continuous emissions monitoring system (CEMS) as required of RWS and all other MWC facilities under federal and state rules. The study of CERMS protocols and methods identified the individual components required for a CERMS, evaluated existing methods of measuring MWC unit load and of ensuring “good combustion”, identified and evaluated the existing continuous monitoring regulatory requirements for MWCs and other major sources, evaluated the state of the practice for the use of CERMS, evaluated CERMS data quality, and identified and evaluated existing protocols for CERMS. Finally, a protocol was developed for trial operation of the CERMS considering the above evaluations.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4507
Author(s):  
Rosalia Sinvula ◽  
Khaled Mohamed Abo-Al-Ez ◽  
Mohamed Tariq Kahn

Most power utilities within Southern Africa are faced with the challenges of harmonic distortion due to the high penetration of renewable energy sources (RES) and the use of electronic devices. There is an excessive total harmonic distortion (THD) measured at the point of common coupling (PCC). In this paper, a proposed harmonic monitoring system for large power users (LPUs) is developed. This proposed system considers harmonic limits of the individual and THD of the customers allowed injecting into the network, which should be part of the contractual electricity supply agreement (ESA). Hence, it will enable the monitoring of harmonic distortion to be smooth by determining whether the customer has passed or failed compliance for individual harmonic order and the THD of the voltage. The measurements of harmonic distortion are done using the Unipower power quality (PQ) analyzers that are connected at different points within the industrial network. Measurements of harmonic distortion of an industrial site are compared to the simulation results performed by DIgSILENT software to validate the proposed harmonic monitoring system. Based on the validation results, it is recommended that the ESA between the power utilities and the customers should consist of the harmonic limits.


Author(s):  
Polaiah Bojja, Pamula Raja Kumari, A.Nagavardhan N.Dinesh, M.Gopla D Anirudh

Dustbins (or Garbage Bins, Trash Cans, whatever you name them) are small containers of plastic or metal used on a temporary basis to store trash (or waste). They are also used for the collection of waste in houses, workplaces, highways, parks, etc. Littering is a major crime in some countries, and public waste bins are also the only way to dispose of small waste. Usually, using different bins for handling wet or dry, recyclable or non-recyclable waste is a common practice. From an ETS perspective, smart waste collection can help municipalities and private waste management companies avoid the need for collection sites, waste disposal facilities and waste treatment plants. As communities increasingly rely on smart city technology to improve, among other things, the quality of life of their residents and the environment, city leaders recognize that smart waste management can also help them achieve sustainability goals such as zero waste and improve services to residents, while improving service to residents. As an example, Development of Some solar-powered bins and recycling bins are already equipped with sensors that analyze data on what is disposed of or recycled and notify collectors when the bin is too full and needs to be picked up. These developed Smart waste management solutions use sensors placed in waste bins to measure levels, notify municipal waste collection services, when the bins are ready to be emptied, and also notify municipal waste collection with a ton has been emptied. Therefore, the solar-powered of sensors based smart waste monitoring system is more and more useful to the current smart cities policies under the smart city project works.


2001 ◽  
Author(s):  
John Donelson ◽  
Wayne M. Zavis ◽  
S. K. (John) Punwani ◽  
Monique Ferguson Stewart ◽  
Mark C. Edwards

Abstract Science Applications International Corporation (SAIC) and Wilcoxon Research have developed a real-time on-board condition monitoring system for freight trains. The Office of Research and Development of the Federal Railroad Administration funded the development of the system. The system monitors bearings, wheels, trucks and brakes on freight trains in order to detect equipment defects and derailments. The objectives of the system are to improve railroad safety and operation efficiency through continuous monitoring of mechanical components on freight trains.


Author(s):  
Ron Astor ◽  
Rami Benbenishty

On their own, photos and videos are not a reliable source of information about what is taking place in a school. It’s easy to react emotionally or with outrage to a video of a fight, a child being picked on, or some other display of abuse or wrongdoing. But everyone knows from highly publicized incidents posted on YouTube, Twitter, or other social media sites that photos and videos can be taken out of context. They tell a story, but they don’t tell the whole story. Even so, they can be used by administrators to discern whether the action shown in the photo or video is an isolated incident or could be a symptom of a larger problem. If an alarming photo or video taken at a school is receiving attention from the media, it’s better to talk about it with the school community as soon as possible than to pretend it didn’t happen. Situations like these create an opportunity to examine and share other sources of data about school safety, violence, and victimization. Too often, one incident can cause the public to draw conclusions about a school that are not accurate. That’s why a monitoring system is necessary— to put such an incident in context. Administrators who can refer to other sources of data regarding violence, drug use, or weapons can respond with more confidence when faced with criticism over one incident. As part of a monitoring system, photos, videos and other technology can be used for positive purposes. They allow students who might skip questions on a survey or don’t want to speak up during a focus group to express themselves in a different way. There are many examples of projects in which students are given cameras and microphones and encouraged to express themselves and present their experiences in school through this media. In addition to the individual students benefitting from such experiences, school leaders, staff members, and parents get the opportunity to see the school from the students’ perspectives.


2009 ◽  
Vol 46 (6) ◽  
pp. 45-48
Author(s):  
李树珉 Li Shumin ◽  
刘斌 Liu Bin ◽  
孙长库 Sun Changku ◽  
赵玉梅 Zhao Yumei

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3758
Author(s):  
Hsing-Cheng Yu ◽  
Ming-Yang Tsai ◽  
Yuan-Chih Tsai ◽  
Jhih-Jyun You ◽  
Chun-Lin Cheng ◽  
...  

Recently, environmental pollution resulting from industrial waste has been emerging in an endless stream. The industrial waste contains chemical materials, heavy metal ions, and other toxic materials. Once the industrial waste is discharged without standards, it might lead to water or environmental pollution. Hence, it has become more important to provide evidence-based water quality monitoring. The use of a multifunctional miniaturized water quality monitoring system (WQMS), that contains continuous monitoring, water quality monitoring, and wireless communication applications, simultaneously, is infrequent. Thus, electrodes integrated with polydimethylsiloxane flow channels were presented in this study to be a compound sensor, and the sensor can be adopted concurrently to measure temperature, pH, electrical conductivity, and copper ion concentration, whose sensitivities are determined as 0.0193 °C/mV, −0.0642 pH/mV, 1.1008 mS/V·cm (from 0 mS/cm to 2 mS/cm) and 1.1975 mS/V·cm (from 2 mS/cm to 5.07 mS/cm), and 0.0111 ppm/mV, respectively. A LoRa shield connected into the system could provide support as a node of long range wide area network (LoRaWAN) for wireless communication application. As mentioned above, the sensors, LoRa, and circuit have been integrated in this study to a continuous monitoring system, WQMS. The advantages of the multifunctional miniaturized WQMS are low cost, small size, easy maintenance, continuous sampling and long-term monitoring for many days. Every tested period is 180 min, and the measured rate is 5 times per 20 min. The feedback signals of the miniaturized WQMS and measured values of the instrument were obtained to compare the difference. In the measured results at three different place-to-place locations the errors of electrical conductivity are 0.051 mS/cm, 0.106 mS/cm, and 0.092 mS/cm, respectively. The errors of pH are 0.68, 0.87, and 0.56, respectively. The errors of temperature are 0.311 °C, 0.252 °C, and 0.304 °C, respectively. The errors of copper ion concentration are 0.051 ppm, 0.058 ppm, 0.050 ppm, respectively.


2020 ◽  
Vol 2 (10) ◽  
Author(s):  
Khushboo Qayyum ◽  
Idrees Zaman ◽  
Anna Förster

Abstract In oceans, fish usually live in an environment that is best suited for their growth. When these fish are introduced into man-made environment, e.g. in mariculture and aquaculture set-ups, the physical parameters might stray from their ideal values, resulting in improper growth and undesired outcomes. Hence, to prevent these undesirable outcomes, continuous monitoring of the physical parameters of the water such as pH, temperature and dissolved oxygen is required. In this work, we present a system called H2O sense, which continuously monitors the physical parameters of the water in tanks and alerts the user in case the values deviate from ideal. We use only low-power, low-cost hardware and open-source development tools, which makes the system easily applicable to various settings. The deployment of our system in the Maritime Laboratory of the University of Namibia shows its efficacy. Furthermore, we evaluate in detail the performance of our system and discuss its applicability in similar challenged environments.


2015 ◽  
Vol 772 ◽  
pp. 597-602
Author(s):  
Gheorghe Daniel Voinea ◽  
Silviu Butnariu

This paper presents the design of an innovative system for the diagnosis and treatment of spine disorders, in particular, the scoliosis. The product consists in a mechatronic device that is able to measure in real time the instantaneous position of the human spine, facilitating a precise diagnosis as well as continuous monitoring for prevention and/or treatment of spine disorders.


Sign in / Sign up

Export Citation Format

Share Document