Potential for the First WTE Facility in Mumbai (Bombay) India

Author(s):  
Perinaz Bhada ◽  
Nickolas J. Themelis

The city of Mumbai (Bombay), India is facing a solid waste management crisis. The infrastructure has been unable to keep pace with economic development and population growth, resulting in insufficient collection of municipal solid waste (MSW) and over-burdened dumps. Improper disposal of solid wastes over several decades and open burning of garbage have led to serious environmental pollution and health problems. This study examined the solid waste management process in Mumbai and the potential for implementation of waste-to-energy facilities. Mumbai’s average per capita waste generation rate is 0.18 tonnes per person. Although the reported collection efficiency of MSW is 90%, almost half of the city’s 12 million people live in slums, some of which do not have access to solid waste services. The most pressing problem is the acute shortage of space for landfilling. When the present waste dumps were constructed they were at the outskirts of the city, but now they are surrounded by housing colonies, thus exposing millions of people to daily inconveniences such as odors, traffic congestion, and to more serious problems associated with air, land, and water pollution and the spread of diseases from rodents and mosquitoes. Mumbai is the financial center of India and has the highest potential for energy generation from the controlled combustion of solid wastes. The lower heating value of MSW is estimated in this study to be 9 MJ/kg, which is slightly lower than the average MSW combusted in the E.U. (10 MJ/kg). The land for the first WTE in Mumbai would be provided by the City and there is a market for the electricity generated by the WTE facility. The main problem to overcome is the source of capital since the present “tipping fees” are very low and inadequate to make the operation profitable and thus attract private investors. Therefore, the only hope is for the local government and one or more philanthropists in Mumbai to team up in financing the first WTE in India as a beacon that improves living conditions in Mumbai, reduces the City’s dependence on the import of fossil fuels, and lights the way for other cities in India to follow.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Ahsan ◽  
M. Alamgir ◽  
M. M. El-Sergany ◽  
S. Shams ◽  
M. K. Rowshon ◽  
...  

This study represents a few basic steps of municipal solid waste management practiced in the six major cities of Bangladesh, namely, Dhaka, Chittagong, Khulna, Rajshahi, Barisal, and Sylhet. A six-month field study was conducted to identify the solid wastes management steps such as storage at source, separation, on-site storage, collection, transportation, treatment, reuse, recycling, and ultimate disposal. This study addresses the role of the city authority to meet the demand of the city dwellers in solving this emerging socioenvironmental issue and the initiatives taken by some nongovernmental organizations and community based organizations. The problems and constraints of the solid wastes management system are also identified to find a sustainable management concept for the urban areas of Bangladesh.


Author(s):  
Yakov Vishnyakov ◽  
Alexander Kanunnikov

The article analyzes the features of municipal solid waste management in Tokyo. Special attention is paid to the analysis of trends in the volume of waste in the city of Tokyo over the past decades, as well as the reasons for the constant decline in these volumes. The article deals with the waste management activities of the Clean Authority of Tokyo, discusses the features of treatment of various types of waste, as well as the arrangement of the Tokyo city waste landfill. It was noted that the capital of Japan succeeded in creating an effective system for the disposal and recycling of municipal solid waste that can ensure the environmental safety of the city, as well as integrate waste into the country’s fuel and energy complex. An important feature of Japanese waste management companies is the desire not only to comply with official environmental standards, but also to adhere to their own standards, even more stringent. Based on an analysis of Japanese experience, the authors put forward proposals for optimizing the sphere of waste management in Russia. In particular, attention is drawn to the need to prevent an environmental catastrophe caused by a careless attitude to waste, improve the quality of life of citizens, prevent social unrest associated with environmental pollution, and also involve waste in the generation of electricity and heat. The authors note that as part of the “trash” reform, it is necessary to increase the environmental awareness of citizens, provide citizens with relevant and complete information about the industry, and create stricter environmental standards for waste to energy plants and other enterprises involved in waste management.


2013 ◽  
Vol 664 ◽  
pp. 179-184 ◽  
Author(s):  
Mohammad Rahim Vaseghi ◽  
Amir Ramezannejad

The current and previous condition of solid waste management programs in the city, Shiraz was studied. Shiraz is one of the capital cities in south of Iran. Different aspects of solid waste programs including collection, transportation, treatments and recycling are discussed. Composition of solid wastes, material analysis, chemical formulation, thermal values, pH and other factors is evaluated. To estimate future conditions an overview of the statistics obtained in previous years is provided. Finally some recommendations are given in case it would be profitable for developing recycling programs in Shiraz city.


Author(s):  
Teno A. West

The City of Taunton, MA (City) has undertaken a competitive procurement process to consider proposals for a private company to develop, design, permit, finance, construct and operate a Solid Waste Management Facility (SWMF), which may be sized up to 1800 tons per day (TPD), to serve both the City’s and region’s needs for long term solid waste management. A comprehensive Request for Qualifications and Proposals (RFQP) for the SWMF was issued in June 2008. The City initiated the procurement process because its current landfill is scheduled to reach capacity in 2013. The procurement process focused on conversion technologies capable of recovering materials and producing electricity or fuels, and maximizing diversion of waste from landfilling. Technologies considered included both traditional and emerging technologies; e.g., composting, co-composting, thermal gasification, aerobic and anaerobic digestion, hydrolysis and mechanical means of waste separation into useful products. Landfilling and traditional waste-to-energy technologies were not considered.


Author(s):  
James J. Binder ◽  
Stephen A. Torres

Taunton, Massachusetts (City) is a city of 55,000 people located in Southeast Massachusetts, approximately 35 miles from Boston. Currently it hosts a regional landfill that will reach capacity in 2013. Beginning in 2005, the City began the process of searching for a solid waste management technology to replace the landfill. The focus for the search has been on conversion technologies capable of recovering materials and producing electricity or fuels, and maximizing diversion of waste from landfilling. Technologies being considered include both traditional and emerging technologies; e.g., composting, co-composting, thermal gasification, aerobic and anaerobic digestion, hydrolysis and mechanical means of waste separation into useful products. Landfilling and traditional waste-to-energy technology are not being considered.


Author(s):  
Kriti Jain ◽  
Chirag Shah

The increasing volume and complexity of waste associated with the modern economy as due to the ranging population, is posing a serious risk to ecosystems and human health. Every year, an estimated 11.2 billion tonnes of solid waste is collected worldwide and decay of the organic proportion of solid waste is contributing about 5 per cent of global greenhouse gas emissions (UNEP). Poor waste management - ranging from non-existing collection systems to ineffective disposal causes air pollution, water and soil contamination. Open and unsanitary landfills contribute to contamination of drinking water and can cause infection and transmit diseases. The dispersal of debris pollutes ecosystems and dangerous substances from waste or garbage puts a strain on the health of urban dwellers and the environment. India, being second most populated country of the world that too with the lesser land area comparatively, faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Population explosion, coupled with improved life style of people, results in increased generation of solid wastes in urban as well as rural areas of the country. The challenges and barriers are significant, but so are the opportunities. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy [2]. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. This study focusses on the minimization of the waste and gives the brief about the various initiations for proper waste management system. Hence moving towards the alternatives is the way to deal with these basic problems. This paper outlines various advances in the area of waste management. It focuses on current practices related to waste management initiatives taken by India. The purpose of this article put a light on various initiatives in the country and locates the scope for improvement in the management of waste which will also clean up the unemployment.


2020 ◽  
Vol 3 (2) ◽  
pp. 153-154
Author(s):  
Joedcel M. Go ◽  
Merlita V. Caelian

The present alarming environmental world crisis is the uncontrolled generation and illegal dumping of solid waste (SW) that poses great harm to public health and the environment (Ali & Sion, 2014). Poor waste management may cause air, water, and soil contamination. The Republic Act 9003 (RA 9003) or the Ecological Solid Waste Management Act (ESWMA) had been in place for several years. However, its implementation was a challenge for every LGU, including in a highly urbanized city. Hence, the paper examined the level of implementation of the provisions and enforcement of prohibited acts on ESWMA of barangays as assessed by community leaders as a whole and according to their geographical location and income. Also, it explores the challenges encountered by the barangays and the recommendations of the community leaders in the implementation of RA 9003 and the local ordinance enacted by the city.


2020 ◽  
Author(s):  
Rakibul Ahasan

Generation of solid waste (SW) is a major problem in urban areas, thus its management is one of the important obligatory functions to not only urban local authority but also for the inhabitants. The citizens expressed their concerns about the waste management system in KCC and associated problems that they are encountering. Waste generation in Khulna City Corporation is around 455 tons of municipal solid waste/day and generation rate is now 0.75 Kg/capita/day on an average. Existing public utility services and facilities are not adequate to meet the demand of disposing these massive amounts of wastes and that’s why several problems are arising. There are some deterrents in the KCC’s solid waste Management system, arising from both the city corporation authority and the citizen of different levels. With a view to address the problem from through community participation, this paper intends to evaluate the potential of community based solid waste management approach in context of Khulna city.


2018 ◽  
Vol 29 (6) ◽  
pp. 1075-1092
Author(s):  
Bupe Getrude Mwanza ◽  
Charles Mbohwa ◽  
Arnesh Telukdarie

Purpose The purpose of this paper is to review the present municipal solid wastes (MSWs) management system, from an engineering management (EM) perspective, for the City of Kitwe while proposing a levers-driven sustainable municipal solid waste management (MSWM) model focussing on improving waste management (WM). Design/methodology/approach The research work involves four stages. First, a comprehensive review of literature is conducted on MSWM. Second, structured interviews are conducted with key experts in solid waste management in the City of Kitwe in order to enhance the knowledge inputs. Third, direct observations and an interview with a WM driver are conducted in order to understand; the collection, disposal and treatment options for MSWs. Lastly, a sustainable model for managing MSWs is proposed Findings The research findings indicate that the existing MSW system for the city is highly unsustainable and lacks EM methodologies. There are still a number of challenges in the management of MSWs which include: lack of proper collection and storage of MSWs; lack of an engineered landfill; lack of waste recovery and treatment systems; and lack of public education aimed at reducing and separating MSWs. Practical implications A correct and detailed database for waste generation, collection, treatment and disposal is needed for the City of Kitwe. The system is necessary for WM resources allocation as well as for planning sustainable WM projects. The proposed model has been developed based on the actual observations, data collection and analysis. Originality/value The research identifies a gap in the management of MSWs for the City of Kitwe. This work is original as no similar MSW model has been proposed globally and specific for a developing economy such as Africa.


Sign in / Sign up

Export Citation Format

Share Document