Mathematical modelling and analysis of voltage super-lift power dc-dc converter for enhanced dynamic characteristics in CCM

Author(s):  
Durga Devi R. ◽  
Nageswari S.

Purpose The purpose of this paper is to propose a mathematical model for voltage super-lift dc-dc power converter in continuous conduction mode (CCM). Using the presented mathematical model, the analysis of dynamics of power stage for voltage super-lift dc-dc power converter can be performed. Design/methodology/approach The proposed method is based on the average state space model using the state equations of the dc-dc power converter. In the proposed method, the converter is represented as a set of differential equations derived for each switching state of the power switch in terms of inductor current and capacitor voltage. The proposed method describes the dynamic behaviour of the system. The controller is designed to meet performance requirement of the system such as to maintain the dynamics such as stability, steady-state accuracy and the speed of response of the system. Using the obtained model, the analysis of dynamic response of the voltage super-lift dc-dc power converter can be performed. Findings The converter is modelled and verified using conventional circuit analysis method employing state-space averaging technique, and their corresponding transfer function is also derived. The dynamics of the converter is investigated using frequency response characteristics obtained using MATLAB programming environment. In addition, to improve the stability of the converter, proportional-integral controller is designed using Ziegler–Nichols tuning rules, and the effect of the compensator in the plant is also investigated. Originality/value The proposed method can be used for analysing the dynamics of power stage for voltage super-lift DC-DC power converter.

Author(s):  
Reza Taghipour ◽  
Tristan Perez ◽  
Torgeir Moan

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms in the mathematical model are replaced by their alternative state-space representations whose parameters are obtained by using the realization theory. The mathematical model is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.


2016 ◽  
Vol 36 (4) ◽  
pp. 460-472 ◽  
Author(s):  
Jing Hu ◽  
Yuan Zhang ◽  
Maogen GE ◽  
Mingzhou Liu ◽  
Liu Conghu ◽  
...  

Purpose The optimal control on reassembly (remanufacturing assembly) error is one of the key technologies to guarantee the assembly precision of remanufactured product. However, because of the uncertainty existing in remanufactured parts, it is difficult to control assembly error during reassembly process. Based on the state space model, this paper aims to propose the optimal control method on reassembly precision to solve this problem. Design/methodology/approach Initially, to ensure the assembly precision of a remanufactured car engine, this paper puts forward an optimal control method on assembly precision for a remanufactured car engine based on the state space model. This method takes assembly workstation operation and remanufactured part attribute as the input vector reassembly status as the state vector and assembly precision as the output vector. Then, the compensation function of reassembly workstation operation input vector is calculated to direct the optimization of the reassembly process. Finally, a case study of a certain remanufactured car engine crankshaft is constructed to verify the feasibility and effectiveness of the method proposed. Findings The optimal control method on reassembly precision is an effective technology in improving the quality of the remanufactured crankshaft. The average qualified rate of the remanufactured crankshaft increased from 83.05 to 90.97 per cent as shown in the case study. Originality/value The optimal control method on the reassembly precision based on the state space model is available to control the assembly precision, thus enhancing the core competitiveness of the remanufacturing enterprises.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Byron J. Idrovo-Aguirre ◽  
Javier E. Contreras-Reyes

PurposeThis paper combines the objective information of six mixed-frequency partial-activity indicators with assumptions or beliefs (called priors) regarding the distribution of the parameters that approximate the state of the construction activity cycle. Thus, this paper uses Bayesian inference with Gibbs simulations and the Kalman filter to estimate the parameters of the state-space model, used to design the Imacon.Design/methodology/approachUnlike other economic sectors of similar importance in aggregate gross domestic product, such as mining and industry, the construction sector lacked a short-term measure that helps to identify its most recent performance.FindingsIndeed, because these priors are susceptible to changes, they provide flexibility to the original Imacon model, allowing for the assessment of risk scenarios and adaption to the greater relative volatility that characterizes the sector's activity.Originality/valueThe classic maximum likelihood method of estimating the monthly construction activity index (Imacon) is rigid to the incorporation of new measures of uncertainty, expectations or different volatility (risks) levels in the state of construction activity. In this context, this paper uses Bayesian inference with 10,000 Gibbs simulations and the Kalman filter to estimate the parameters of the state-space model, used to design the Imacon, inspired by the original works of Mariano and Murasawa (2003) and Kim and Nelson (1998). Thus, this paper consists of a natural extension of the classic method used by Tejada (2006) in the estimation of the old Imacon.


Geophysics ◽  
1979 ◽  
Vol 44 (5) ◽  
pp. 880-895 ◽  
Author(s):  
J. M. Mendel ◽  
N. E. Nahi ◽  
M. Chan

We develop time‐domain state‐space models for lossless layered media which are described by the wave equation and boundary conditions. We develop state‐space models for two cases: (1) source and sensor at the surface, and (2) source and sensor in the first layer. Our models are for nonequal one‐way traveltimes; hence, they are more general than most existing models of layered media which are usually for layers of equal one‐way traveltimes. A notable exception to this is the work of Wuenschel (1960); however, most of the useful results even in his paper are developed only for the uniform traveltime case. Our state‐space model treat all of the equations that describe a layered‐media system together in the time domain. Earlier approaches (e.g., Wuenschel, 1960; Robinson, 1968) recursively connect adjacent layers by means of frequency‐domain relationships. We refer to our state equations as “causal functional equations.” They actually represent a new class of equations. Why are we interested in a different class of models for what appears to be a well‐studied system? As is well known, there is a vast literature associated with systems which are described by time‐domain state‐space models. Most recent results in estimation and identification theories, for example, require a state‐space model. These time‐domain techniques have proven very beneficial outside of the geophysics field and we feel should also be beneficial in the geophysics field. In fact, our ultimate objective is to apply those theories to the layered‐media problem; but, to do so, of course, requires state‐space models—hence, this paper.


2017 ◽  
Vol 37 (2) ◽  
pp. 249-259 ◽  
Author(s):  
Xin Li ◽  
Jianzhong Shang ◽  
Hong Zhu

Purpose This paper aims to consider a problem of assembly sensitivity in a multi-station assembly process. The authors focus on the assembly process of aircrafts, which includes cabins and inertial navigation system (INSs), and establish the assembly process state space model for their assembly sensitivity research. Design/methodology/approach To date, the process-related errors that cause large variations in key product characteristics remains one of the most critical research topics in assembly sensitivity analysis. This paper focuses on the unique challenges brought about by the multi-station system: a system-level model for characterizing the variation propagation in the entire process, and the necessity of describing the system response to variation inputs at both station-level and single fixture-level scales. State space representation is used to describe the propagation of variation in such a multi-station process, incorporating assembly process parameters such as fixture-locating layout at individual stations and station-to-station locating layout change. Findings Following the sensitivity analysis in control theory, a group of hierarchical sensitivity indices is defined and expressed in terms of the system matrices in the state space model, which are determined by the given assembly process parameters. Originality/value A case study of assembly sensitivity for a multi-station assembly process illustrates and validates the proposed methodology.


2019 ◽  
Vol 16 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Tapas Kumar Mohapatra ◽  
Asim Kumar Dey ◽  
Krushna Keshab Mohapatra ◽  
Binod Sahu

Purpose A two switches non-isolated DC-DC novel buck-boost converter for charging the battery of electric vehicle is projected in this paper. The performance of the converter is compared with conventional buck-boost and transformer-less P/O buck-boost converter by Shan and Faqiang. The detail operation and performance analysis of the proposed converter is described both in continuous conduction mode and discontinuous conduction mode. A state space model and simulation model is designed in MATLAB. The PID controller parameters are tuned using Single-objective Salp swarm optimization algorithm using MATLAB. The controller is implemented using DSP board. The hardware and simulation results are projected in the paper to validate the effectiveness of the proposed buck-boost converter. A comparison analysis is projected among conventional converter and Shan & Faqiang converter. Design/methodology/approach The converter state space model is designed and simulation model is also developed in MATALAB. The controller is implemented using DSP board. The parameters are obtained using optimization technique using SSA algorithm. The hardware design is also implemented, and the result is compared with the Shan and Faqiang converter. The efficiency of the converter is also tested. Findings The converter is providing a higher efficiency. The inductor current is also positive in both buck and boost mode. The robustness of the controller is better for a wide range of variation of input voltage because the output voltage remains almost constant. Therefore, this is very suitable for battery charging and PV module application. Practical implications For battery charging from PV module where voltage fluctuation is frequent. Social implications The authors can use household applications to charge the battery using PV module. Originality/value The converter design concept is new. Optimization is used to find the parameters of the controllers and is implemented in hardware design. The parameters obtained provide robustness in the converter performance.


Author(s):  
Zang Shusheng ◽  
Zheng Hongtao ◽  
Dong Keyong

Based on a ship driven by two controllable pitch propellers (CPP), one single CPP driven by one single gas turbine (GT), a mathematical model for a propulsion system is deduced, and its state-space model is established. In this paper, it is verified that the use of Phase-Linearized Discrete Simulation (PLDS) to estimate large perturbations is practicable. Especially for multivariate systems, this method appears to be rather convenient. We also present the results of simulation to the dynamic braking process of gas turbine propulsion system for a ship at the combined speed/power governing mode and the power governing mode of gas turbine.


2020 ◽  
Vol 92 (7) ◽  
pp. 1093-1100
Author(s):  
Oguz Kose ◽  
Tugrul Oktay

Purpose The purpose of this paper is to design a quadrotor with collective morphing using the simultaneous perturbation stochastic approximation (SPSA) optimization algorithm. Design/methodology/approach Quadrotor design is made by using Solidworks drawing program and some mathematical performance relations. Modelling and simulation are performed in Matlab/Simulink program by using the state space model approaches with the parameters mostly taken from Solidworks. Proportional integral derivative (PID) approach is used as control technique. Morphing amount and the best PID coefficients are determined by using SPSA algorithm. Findings By using SPSA algorithm, the amount of morphing and the best PID coefficients are determined, and the quadrotor longitudinal and lateral flights are made most stable via morphing. Research limitations/implications It takes quite a long time to model the quadrotor in Solidworks and Matlab/Simulink with the state space model and using the SPSA algorithm. However, this situation is overcome with the proposed model. Practical implications Optimization with SPSA is very useful in determining the amount of morphing and PID coefficients for quadrotors. Social implications SPSA optimization method is useful in terms of cost, time and practicality. Originality/value It is released to improve performance with morphing, to determine morphing rate with SPSA algorithm and to determine PID coefficients accordingly.


2016 ◽  
Vol 65 (4) ◽  
pp. 703-717
Author(s):  
Włodzimierz Janke

AbstractIn the description of small-signal transmittances of switch-mode power converters several characteristic frequencies are usually used, corresponding to poles and zeros of transmittances. The knowledge of these frequencies is important in the design of control circuits for converters and usually are assumed to be constant for a given power stage of a converter. The aim of the paper is to evaluate the influence of converter primary parameters and load conductance on characteristic frequencies. Analytical derivations and numerical calculations are performed for an ideal and non-ideal BUCK converter working in continuous or discontinuous conduction mode.


Sign in / Sign up

Export Citation Format

Share Document