Material Challenges in Arctic Areas

Author(s):  
Agnes Marie Horn ◽  
Per Egil Kvaale ◽  
Mons Hauge

There is a lack of rules and standards that provide guidelines for material selection and qualification of materials for offshore and onshore structures in arctic areas. Many current standards for low temperature applications such as cryogenic piping and process systems do not reflect the need for low-cost bulk materials for large volume applications such as pipelines and production facilities. The growing focus on oil and gas exploration in arctic areas has raised the need for new standards and industry practice that supports cost effective and safe installation and operation of production and transport facilities in the cold climate. There are materials today that are applicable for low temperature conditions. The grades are often highly alloyed (typically 3–9% Ni) with good toughness properties, but these alloys are expensive compared to conventional steel material grades. Such materials may not be applicable in pipelines, structures and process plants. This challenge can be met in two ways. First, structural steels that are capable of being welded and operated in the cold climate should be developed and qualified. Second, materials for forged and casted components that can be welded to the structural steels should be developed and qualified to fit into the integrated structure or pipeline system. Some actions have been taken to develop new standards e.g. within ISO19906, and actions are being taken in Russia to harmonize their specifications with the international standards, but this is a comprehensive job and the work must be executed in parallel with the development of new steels and welding technology.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhangli Liu ◽  
Jiaxing Xu ◽  
Min Xu ◽  
Caifeng Huang ◽  
Ruzhu Wang ◽  
...  

AbstractThermally driven water-based sorption refrigeration is considered a promising strategy to realize near-zero-carbon cooling applications by addressing the urgent global climate challenge caused by conventional chlorofluorocarbon (CFC) refrigerants. However, developing cost-effective and high-performance water-sorption porous materials driven by low-temperature thermal energy is still a significant challenge. Here, we propose a zeolite-like aluminophosphate with SFO topology (EMM-8) for water-sorption-driven refrigeration. The EMM-8 is characterized by 12-membered ring channels with large accessible pore volume and exhibits high water uptake of 0.28 g·g−1 at P/P0 = 0.2, low-temperature regeneration of 65 °C, fast adsorption kinetics, remarkable hydrothermal stability, and scalable fabrication. Importantly, the water-sorption-based chiller with EMM-8 shows the potential of achieving a record coefficient of performance (COP) of 0.85 at an ultralow-driven temperature of 63 °C. The working performance makes EMM-8 a practical alternative to realize high-efficient ultra-low-temperature-driven refrigeration.


Author(s):  
Pablo Cesar Trejo ◽  
Jose Renato M.S. Oliveira ◽  
Márcio S.S. Almeida ◽  
Maria C.F. Almeida ◽  
Mario A. Vignoles

The development of new offshore oil and gas fields is continuously expanding to ultra-deep waters. This tendency and the necessity of reducing project costs have been stimulating the development of new technologies as well as the enhancement of floating production systems. In this regard, pipelines and flexible riser systems have been getting more attention due to its low cost of installation and operation. In order to project a pipeline system, it is important to understand the pipe-soil interaction mechanisms and quantify the influence of soil behaviour on pipe response caused by lateral movement such as thermal buckling. The loads that a pipeline is subjected have been a topic of many experimental studies that aim to reproduce those loads in a realistic manner. This present study concerns the analysis of lateral clay-pipe interaction associated with large deformations and berm formation process at the leading edge of the pipe during movement at given burial depths. A series of centrifuge tests was conducted to assess the relationship between horizontal force and lateral pipe displacement. The breakout force experimental results were compared with different literature proposals, showing a good agreement. A procedure was also proposed to evaluate the normalized lateral force through the combination of two different approaches. The results showed a good comparison with the centrifuge experimental data.


Author(s):  
Ove T. Gudmestad ◽  
Daniel Karunakaran

With increased interests in oil and gas exploration in cold climate regions, it is not realistic that all construction activities can take place during the short summer and work will continue into the early fall and possibly later. The offshore contractors must, therefore, be ready to participate in construction work in these regions during an extended season, i.e. outside the summer season with milder weather conditions. It is also important that some key work-intensive activities (e.g. pipe laying) can start as early as possible in the season. This paper will discuss the challenges associated with construction work in cold climate regions with emphasis on the physical conditions, in particular with reference to Polar Low Pressures and the potential for icing, as well as the logistics of working long distances from established supply bases. Large uncertainties in weather forecasts call for proper management decisions accounting for the specifics of the area. Long periods of “waiting on weather” might result and management must have the patience to wait until safe operations can commence. Emphasis will be on the Barents Sea where recent hydrocarbon findings have proven very encouraging and where a huge area soon will be opened for exploration, following the agreement on the border between Norway and Russia, potentially calling for joint Norwegian–Russian construction projects (Bulakh et al., 2011).


Author(s):  
Hubert Lejeune ◽  
Stéphane Javanaud ◽  
Kevin Richard

With Oil and Gas exploration and production in low temperature arctic environment, new concerns arise concerning the application of the existing design rules for these conditions. Most codes and standards for bolted flange calculation do not include specific rules concerning application at low temperature. Especially, gasket performances under low temperature are neither tabulated nor easily available from other public sources. In this context, in collaboration with TOTAL, SCHLUMBERGER and SAIPEM sponsors, the CETIM has performed a program called ARCTICSEAL to characterize the flange gasket behavior in arctic environment. The goal is to check that gasket references, commonly used by these companies, are still usable under low temperature arctic conditions without main performance loss. The test program involves mechanical and sealing tests performed on 4 gasket types (sheet fiber based, sheet PTFE based, sheet graphite based and graphite spiral wound) with both NPS 8 and NPS 16 gasket sizes. Gasket performances are determined at −60°C, after loading at −25°C. Additional test involving hot/cold thermal cycling ageing (simulation of intermittent hot process fluid in the bolted flange) have also been performed. The result shows the ability of the tested gasket references to maintain good sealing behavior in most cases. Moreover, the hot/cold thermal cycling ageing improves the sealing performances for some of the tested gasket references. Moreover, a dedicated test stand has been developed to study the behavior of NPS 8 flange connection exposed to quick heat-up after exposure to low temperature environment.


Author(s):  
Debra Tetteh-Wayoe

The cost effective design and construction of liquid pipeline facilities traditionally necessitates the use of bolted joints as opposed to welds. Some of these bolted joints are frequently disassembled and reassembled as part of regular maintenance, while others are assembled at the time of construction and expected to retain a seal for the lifetime of the pipeline. Consequently, the design and installation practices employed for bolted connections are relied upon to produce the same operational life and integrity as welded pipe. In an effort to ensure that the bolted joints used on our pipeline system are as reliable as our welded joints, we investigated industry best practices for flange assembly and the root causes of joint failure. We have completed extensive research of technical literature, including the torquing procedures used in various industries, and performed field-testing on our own system. Generally we have found that: • Flange assembly failures and concerns about this issue are common in the oil and gas industry; • Practices for tightening flanges are inconsistent; and • To accomplish and retain an effective gasket seal, and thus minimize life cycle leaks, one has to consider many factors, including the amount of torque applied to nuts, the stud and nut friction, the type of gasket used, the size of the studs/nuts/flanges, the type of equipment used for tightening, the calibration of the torquing equipment, flange face alignment, and torquing sequence. Using the results of our investigation, we implemented several measures to enhance both the quality and the long-term integrity of our bolted flange connections. This paper describes the results of our investigations, as well as the practices implemented for flange assemblies required for maintenance and new construction activities.


Author(s):  
Bradley M. Jones ◽  
André-Michel Ferrari

Reliability, Availability and Maintainability (RAM) models were first developed in Enbridge Liquids Pipelines in 2006 and in the last 3 years have contributed over $200 Million in capital cost avoidance while maintaining or improving the reliable design and operation of the pipeline system. These models constitute a very effective, factual and dependable tool to assess the throughput performance of a pipeline system over its entire life cycle or a specified time of interest. In addition, the RAM model cost is a small fraction of the overall monetary benefit, in the order of 1%, hence making RAM models a highly leveraged activity. The concept of a RAM model stems from Reliability Block Diagram methods (also known as Dependent Diagrams). Interaction of large, complex and multi layered systems can then be analyzed using the Monte Carlo simulation methods (or Stochastic Discrete Event Simulation) hence quantifying the output of the entire system with greater accuracy than other estimating tools or methods. Over 10 years, Enbridge Liquids Pipelines has developed its own failure database for equipment and operational events consequently almost all model inputs are based on in-house data rather than industry generic data, making the model output more robust, accurate and appropriate for internal use. Initially, in Enbridge Liquids Pipelines, RAM models were mainly built to assess and confirm the design capabilities of future pipelines designs and assist in the optimal selection of specific design options. Because of the effectiveness of the tool combined with the current cost constrained business environment, the company is moving towards building RAM models for assets already in operation in order to optimize their performance. This is proving to be an extremely cost effective addition to internal decision making processes. The approach has been used in risk based budgeting, asset maintenance, design modifications and throughput optimization initiatives. In various industries including Oil and Gas, RAM models have proven their worth over time as an effective cost avoidance tool. This approach has now been successfully deployed in the Pipeline Industry at Enbridge. As an example, a RAM model conducted during the design phase of a pipeline project saved $28 million in capital by proving that an additional storage tank and significant new infrastructure was not required. Another benefit of RAM models has been their ability to confirm or counter stated assumptions by internal stakeholders. Equipment upgrades and equipment sparing decisions are often seriously debated and costly decisions may not always be based on complete economical foundations but rather on avoiding past negative experiences or by following basic guidelines that are less than optimal. When a project or operational team needs to find an alternative, a RAM model is a tool of choice to evaluate, and justify the best option. Because of its proven value, RAM models are now an integral part of Enbridge Liquids Pipelines Design Standards and are used on all large projects. Models recently built for operational pipelines delivered similar value so in the near future the work will be expanded to encompass the entire existing network of integrated pipelines to improve on performance and operational costs.


Author(s):  
J. A. Fournell

Double Block and Bleed (DBB) is the term commonly used to describe the systems or valving arrangements that provide double barrier pressure isolation of those performing work on a pipeline system downstream of the barrier. The consequences of releasing pipeline pressure downstream to an unsuspecting maintenance crew go without stating. If the risks are so high as to demand not single, but double barrier isolation between the fury of pipeline pressure and the safety of personnel and equipment, why then has it been so difficult to develop a consensus for the definition or description of DBB systems? This paper will explore in detail the internationally published definitions for DBB and analyze their merits with respect to pipeline safety. Definitions from organizations such as the American Petroleum Institute (API), Occupational Health and Safety (OHSA), the International Standards Organization (ISO) will be reviewed to determine what they contribute or fail to contribute to the intent of worker protection. Some Provincial Governments have written specific requirements for pipeline isolation into law, while others do not address the matter. These issues will also be explored and compared to the practices of companies operating oil and gas pipelines. Some insight on the division of definitions is offered through an understanding of the purposes or needs of the definer. For example, a valve manufacturer with a need to demonstrate that his valve will indeed block flow from both directions and thereby permit maintenance of the valve without removal from the pipeline may not fully appreciate the pipeline maintenance employee’s need to isolate himself from pipeline pressure by two independent barriers. It will be shown that standards and specifications are available to support both perspectives and that there are compelling reasons for deriving commonality between these perspectives. With the development of International Standards for oil and gas pipelines and increasing emphasis on the harmonization of various national standards, matters such as operator safety must not be compromised. Interesting opportunities exist to revisit topics such as definitions for DBB and perhaps derive a set of words that allows consensus and encompasses the true intent of the concept.


Author(s):  
Oluwafemi Ayodeji Olugboji ◽  
Adinoyi Abdulmajeed Sadiq ◽  
Oluwafemi Olorunsaiye ◽  
David Omeiza Peters ◽  
Babatunde Ayobami Ajayi

Pipeline defects and oil leakages pose an enormous challenge especially in the oil and gas industries, hence, the need for an effective and economical pipeline inspection system. This work focused on the development of a cost effective In-Line-Inspection tool called a smart pipe inspection gauge (PIG). A Test bed was designed and developed to simulate the impulses experienced by the PIG as it moved along the pipeline. The electronics and sensors embedded in the smart PIG were designed to detect vibrations as it moved along the pipe wall and allowed for the wireless transmission of data collected by the PIG system. The results obtained from the laboratory tests revealed dramatic changes in the vibrational intensity experienced by the smart PIG at various intervals. This validates the use of off-the-shelf sensing equipment with a low cost assembly to detect defects in pipelines.


Author(s):  
Amrit Om Nayak ◽  
S. Kalaivanan ◽  
D. Manikandan ◽  
G. Ramkumar ◽  
T. Manoj ◽  
...  

We have tried to design an all terrain vehicle that meets international standards and is also cost effective at the same time. We have focused on every single system to improve the performance of each component. Our vehicle can navigate through almost all terrain, which ultimately is the objective behind the making of any all terrain vehicle. We began the task of designing by conducting extensive research of each main component of the vehicle. We did not want to design certain areas such as the frame, and then make the rest to fit. We considered each component to be significant, and thereby designed the vehicle as a whole trying to optimize each component while constantly considering how other components would be affected. This forced us to think outside the box, research more thoroughly, and redesign components along the way in order to have a successful design. We used the necessary parameters to create a Qualitative Function Diagram (QFD) to determine which parameters were the most critical. These key parameters ranging from most critical to least critical are safety, reliability, low cost, ease of operation and maintenance, and overall performance.


2020 ◽  
Author(s):  
Elizabeth Passey ◽  
Giles Hammond ◽  
Steven Bramsiepe ◽  
Abhinav Prasad ◽  
Richard Middlemiss ◽  
...  

<p>Gravimetry allows us to study sub-surface structures remotely by measuring changes in Earth's surface gravitational field and using this data to infer the density of geological structures. Of its wide range of applications, it is mostly used in the oil and gas exploration industry, volcanology, civil engineering and even archaeological studies. Airborne gravimetry is a vital method of conducting a spatial gravimetric survey in areas which are difficult to access by foot, such as mountains. Generally, sensors are modified for air crafts platforms by installing them on large gimbal systems, or a strap-down gravimeter can be used as a lower-cost alternative. Now, a new MEMs gravimeter called “Wee-g” is enabling the development of a system to deploy the gravimeter on an unmanned aerial vehicle (UAV or drone). Wee-g was first developed with the objective of developing a low-cost MEMS accelerometer for gravimetric use which could be manufactured on a large scale. In 2016, Wee-g was used to measure Earth tides - the elastic deformation of the Earth caused by gravitational fields of the Moon and Sun. Since then, the device electronics have been miniaturised to make the system portable and has been tested at the Campsie Hills just north of Glasgow. Work is underway to build an isolation platform with active stabilisation on which the Wee-g can be mounted to be deployed on a drone which will reduce airborne surveys costs further and allow for more airborne gravimetric surveys to be carried out in remote locations.</p>


Sign in / Sign up

Export Citation Format

Share Document