A Robust Asymptotically Based Modeling Approach for Two-Phase Liquid-Liquid Flow in Pipes

Author(s):  
M. M. Awad ◽  
S. D. Butt

The flow of two immiscible liquids such as oil and water is very important in the petroleum industry like oil recovery processes. For example, the injection of water into the oil flowing in the pipeline reduces the resistance to flow and the pressure gradient. Thus, there is no need for large pumping units. In the present study, a simple semi-theoretical method for calculating the two-phase frictional pressure gradient for liquid-liquid flow in pipes using asymptotic analysis is presented. The two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for the more viscous liquid and the less viscous liquid flowing alone. The proposed model can be transformed into either a two-phase frictional multiplier for the more viscous liquid flowing alone (φ12) or two-phase frictional multiplier for the less viscous liquid flowing alone (φ22) as a function of the Lockhart-Martinelli parameter, X. The advantage of the new model is that it has only one fitting parameter (p). Therefore, calibration of the new model to experimental data is greatly simplified. The new model is able to model the existing multi parameters correlations by fitting the single parameter p. Comparison with experimental data for two-phase frictional multiplier versus the Lockhart-Martinelli parameter (X) is presented.

Author(s):  
M. M. Awad ◽  
S. D. Butt

A simple semi-theoretical method for calculating two-phase frictional pressure gradient in porous media using asymptotic analysis is presented. Two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the present model, the two-phase frictional pressure gradient for x ≅ 0 is nearly identical to single-phase liquid frictional pressure gradient. Also, the two-phase frictional pressure gradient for x ≅ 1 is nearly identical to single-phase gas frictional pressure gradient. The proposed model can be transformed into either a two-phase frictional multiplier for liquid flowing alone (φl2) or two-phase frictional multiplier for gas flowing alone (φg2) as a function of the Lockhart-Martinelli parameter, X. The advantage of the new model is that it has only one fitting parameter (p) while the other existing correlations such as Larkins et al. correlation, Sato et al. correlation, and Goto and Gaspillo correlation have three constants. Therefore, calibration of the new model to experimental data is greatly simplified. The new model is able to model the existing multi parameters correlations by fitting the single parameter p. Specifically, p = 1/3.25 for Midoux et al. correlation, p = 1/3.25 for Rao et al. correlation, p = 1/3.5 for Tosun correlation, p = 1/3.25 for Larkins et al. correlation, p = 1/3.75 for Sato et al. correlation, and p = 1/3.5 for Goto and Gaspillo correlation.


Author(s):  
M. M. Awad ◽  
S. D. Butt

In the current study, two-phase flow modeling in oil and gas applications using asymptotic analysis is presented. Examples of two-phase liquid-liquid flow in pipes, two-phase gas-liquid flow in fractures, and two-phase gas-liquid flow in porous media are presented. In the present study, a simple semi-theoretical method for calculating the two-phase frictional pressure gradient in oil and gas applications using asymptotic analysis is presented. The proposed model can be transformed into two-phase frictional multiplier as a function of the Lockhart-Martinelli parameter, X. The advantage of the new model is that it has only one fitting parameter (p). Therefore, calibration of the new model to experimental data is greatly simplified. The new model is able to model the existing multi parameters correlations by fitting the single parameter p. Comparison with experimental data for two-phase frictional multiplier versus the Lockhart-Martinelli parameter (X) is presented.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Pablo Druetta ◽  
Francesco Picchioni

Chemical Enhanced Oil Recovery (cEOR) processes comprise a number of techniques whichmodify the rock/fluid properties in order to mobilize the remaining oil. Among these, surfactantflooding is one of the most used and well-known processes; it is mainly used to decrease the interfacialenergy between the phases and thus lowering the residual oil saturation. A novel two-dimensionalflooding simulator is presented for a four-component (water, petroleum, surfactant, salt), two-phase(aqueous, oleous) model in porous media. The system is then solved using a second-order finitedifference method with the IMPEC (IMplicit Pressure and Explicit Concentration) scheme. The oilrecovery efficiency evidenced a strong dependency on the chemical component properties and itsphase behaviour. In order to accurately model the latter, the simulator uses and improves a simplifiedternary diagram, introducing the dependence of the partition coefficient on the salt concentration.Results showed that the surfactant partitioning between the phases is the most important parameterduring the EOR process. Moreover, the presence of salt affects this partitioning coefficient, modifyingconsiderably the sweeping efficiency. Therefore, the control of the salinity in the injection water isdeemed fundamental for the success of EOR operations with surfactants.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6529
Author(s):  
Krystian Czernek ◽  
Stanisław Witczak

The paper presents the characteristics of the original optoelectronic system for measuring the values of hydrodynamics of two-phase downward gas-very viscous liquid flow. The measurement methods and results of the research on selected values describing gas–oil two-phase flow are presented. The study was conducted in vertical pipes with diameters of 12.5, 16, 22, and 54 mm. The research was conducted with the superficial velocities of air jg = 0–29.9 m/s and oil jl = 0–0.254 m/s, which corresponded to the values of gas stream density gg = (0–37.31) kg/(m2s) and of liquid gl = (0.61–226.87) kg/(m2s), in order to determine the influence of air and oil streams on the character of liquid films. The variations in oil viscosity were applied in the range ηl = (0.055–1.517) Pas. The study results that were obtained with optical probes along with computer image analysis system revealed vast research opportunities in terms of the identification of gas–liquid two-phase downward flow structures that were generated as well as the determination of the thickness of liquid film with various level of interfacial surface area undulation. The designed and constructed proprietary measuring system is also useful for testing the liquid layer by determining the parameters of the resulting waves. It is considered that the apparatus system that is presented in the article is the most effective in examining the properties of liquid layers of oil and other liquids with low electrical conductivity and a significant degree of monochromatic light absorption. In view of noninvasive technique of measuring characteristic values of liquid films being formed, the above measuring system is believed to be very useful for industry in the diagnostics of the apparatus employing such flows.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
M. M. Awad ◽  
S. D. Butt

A simple semitheoretical method for calculating the two-phase frictional pressure gradient in porous media using asymptotic analysis is presented. The two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the present model, the two-phase frictional pressure gradient for x≅0 is nearly identical to the single-phase liquid frictional pressure gradient. Also, the two-phase frictional pressure gradient for x≅1 is nearly identical to the single-phase gas frictional pressure gradient. The proposed model can be transformed into either a two-phase frictional multiplier for liquid flowing alone (ϕl2) or a two-phase frictional multiplier for gas flowing alone (ϕg2) as a function of the Lockhart–Martinelli parameter X. The advantage of the new model is that it has only one fitting parameter (p), while the other existing correlations, such as the correlation of Larkins et al., Sato et al., and Goto and Gaspillo, have three constants. Therefore, calibration of the new model to the experimental data is greatly simplified. The new model is able to model the existing multiparameter correlations by fitting the single parameter p. Specifically, p=1/3.25 for the correlation of Midoux et al., p=1/3.25 for the correlation of Rao et al., p=1/3.5 for the Tosun correlation, p=1/3.25 for the correlation of Larkins et al., p=1/3.75 for the correlation of Sato et al., and p=1/3.5 for the Goto and Gaspillo correlation.


Author(s):  
Hong-Quan Zhang ◽  
Qian Wang ◽  
Cem Sarica ◽  
James P. Brill

In Zhang et al. [1], a unified hydrodynamic model is developed for prediction of gas-liquid pipe flow behavior based on slug dynamics. In this study, the new model is validated with extensive experimental data acquired with different pipe diameters, inclination angles, fluid physical properties, gas-liquid flow rates and flow patterns. Good agreement is observed in every aspect of the two-phase pipe flow.


Author(s):  
Catalina Posada ◽  
Paulo Waltrich

The present investigation presents a comparative study between two-phase flow models and experimental data. Experimental data was obtained using a 42 m long, 0.05 m ID tube system. The experimental data include conditions for pressures ranging from 1.2 to 2.8 bara, superficial liquid velocities 0.02–0.3 m/s, and superficial gas velocity ranges 0.17–26 m/s. The experimental data was used to evaluate the performance of steady-state empirical and mechanistic models while estimating liquid holdup and pressure gradient under steady-state and oscillatory conditions. The purpose of this analysis is first to evaluate the accuracy of the models predicting the liquid holdup and pressure gradient under steady-state conditions. Then, after evaluating the models under state-steady conditions, the same models are used to predict the same parameters for oscillatory and periodic conditions for similar gas and liquid velocities. The transient multiphase flow simulator OLGA, which has been widely used in the oil and gas industry, was implemented to model one oscillatory case to evaluate the prediction improvement while using a transient instead of a steady-state model to predict oscillatory flows. For the model with best performance for steady-state pressure gradient prediction, the absolute percentage error is 12% for Uls = 0.02 m/s and 5% for Uls = 0.3. For oscillatory conditions, the absolute percentage error is 30% for Uls = 0.02 m/s and 4% for Uls = 0.3. OLGA results underpredict the experimental pressure gradient under oscillatory conditions with errors up to 30%. Therefore, it was possible to conclude that the models can predict the average of the oscillatory data almost as well as for steady-state conditions.


Author(s):  
Rinaldo Antonio de Melo Vieira ◽  
Artur Posenato Garcia

One-dimensional single-phase flow has only one characteristic velocity, which is the area-averaged velocity. On the other hand, one-dimensional two-phase flow has several characteristics velocities, such as center of volume mixture velocity and center of mass mixture velocity. Under slip condition, usually they are quite different. In a simple way, one may think that the petroleum correlations and the drift-flux model are an attempt to “adapt” the single-phase momentum equation for a mixture of more than one phase, where the several parameters in the single-phase equation are replaced by average-mixture ones. These two models use different considerations for this “adaptation”. For instance, for friction loss calculation, petroleum correlations use the mixture volume velocity while drift-flux models use the mixture mass velocity. Normally, the volume velocity is higher than the mass velocity, and petroleum correlations may calculate friction gradients higher than the ones obtained by drift-flux models. This is very important, especially for horizontal and slightly inclined upward flows, where the friction pressure gradient is dominant. This work compares the pressure gradient evaluated by these two models for horizontal and slightly inclined upward flowlines using available data found in literature. The comparison shows that, depending on the situation, one model gives better results than the other. Based on the results, a new approach for two-phase flow friction calculation is proposed. The new model represents a combination of the approach used by the Petroleum Correlations and the Drift-Flux Model, using different characteristic velocities (volume, mass and a new one defined by the authors). The new model is very simple to implement and shows good agreement with the tested data.


Sign in / Sign up

Export Citation Format

Share Document