scholarly journals Precise Determination of Liquid Layer Thickness with Downward Annular Two-Phase Gas-Very Viscous Liquid Flow

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6529
Author(s):  
Krystian Czernek ◽  
Stanisław Witczak

The paper presents the characteristics of the original optoelectronic system for measuring the values of hydrodynamics of two-phase downward gas-very viscous liquid flow. The measurement methods and results of the research on selected values describing gas–oil two-phase flow are presented. The study was conducted in vertical pipes with diameters of 12.5, 16, 22, and 54 mm. The research was conducted with the superficial velocities of air jg = 0–29.9 m/s and oil jl = 0–0.254 m/s, which corresponded to the values of gas stream density gg = (0–37.31) kg/(m2s) and of liquid gl = (0.61–226.87) kg/(m2s), in order to determine the influence of air and oil streams on the character of liquid films. The variations in oil viscosity were applied in the range ηl = (0.055–1.517) Pas. The study results that were obtained with optical probes along with computer image analysis system revealed vast research opportunities in terms of the identification of gas–liquid two-phase downward flow structures that were generated as well as the determination of the thickness of liquid film with various level of interfacial surface area undulation. The designed and constructed proprietary measuring system is also useful for testing the liquid layer by determining the parameters of the resulting waves. It is considered that the apparatus system that is presented in the article is the most effective in examining the properties of liquid layers of oil and other liquids with low electrical conductivity and a significant degree of monochromatic light absorption. In view of noninvasive technique of measuring characteristic values of liquid films being formed, the above measuring system is believed to be very useful for industry in the diagnostics of the apparatus employing such flows.

Author(s):  
M. M. Awad ◽  
S. D. Butt

The flow of two immiscible liquids such as oil and water is very important in the petroleum industry like oil recovery processes. For example, the injection of water into the oil flowing in the pipeline reduces the resistance to flow and the pressure gradient. Thus, there is no need for large pumping units. In the present study, a simple semi-theoretical method for calculating the two-phase frictional pressure gradient for liquid-liquid flow in pipes using asymptotic analysis is presented. The two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for the more viscous liquid and the less viscous liquid flowing alone. The proposed model can be transformed into either a two-phase frictional multiplier for the more viscous liquid flowing alone (φ12) or two-phase frictional multiplier for the less viscous liquid flowing alone (φ22) as a function of the Lockhart-Martinelli parameter, X. The advantage of the new model is that it has only one fitting parameter (p). Therefore, calibration of the new model to experimental data is greatly simplified. The new model is able to model the existing multi parameters correlations by fitting the single parameter p. Comparison with experimental data for two-phase frictional multiplier versus the Lockhart-Martinelli parameter (X) is presented.


2019 ◽  
Vol 25 (12) ◽  
pp. 114-121
Author(s):  
Abdul Muhsin Mahood Abass

The petroleum sector has a significant influence on the development of multiphase detection sensor techniques; to separate the crude oil from water, the crude oil tank is used. In this paper, a measuring system using a simple and low cost two parallel plate capacitance sensor is designed and implemented based on a Micro controlled embedded system plus PC to automatically identify the (gas/oil) and (oil/water) dynamic multi-interface in the crude oil tank. The Permittivity differences of two-phase liquids are used to determine the interface of them by measuring the relative changes of the sensor’s capacitance when passes through the liquid’s interface. The experiment results to determine the liquid’s interface is satisfying and close to the theoretical analysis model.


1986 ◽  
Vol 60 (3) ◽  
pp. 901-907 ◽  
Author(s):  
C. S. Kim ◽  
C. R. Rodriguez ◽  
M. A. Eldridge ◽  
M. A. Sackner

The critical conditions for mucous layer transport in the respiratory airways by two-phase gas-liquid flow mechanism were investigated by using 0.5- and 1.0-cm-ID tube models. Several test liquids with rheological properties comparable to human sputum were supplied continuously into the vertically positioned tube models in such a way that the liquid could form a uniform layer while traveling upward through the tube with a continuous upward airflow. The critical airflow rate and critical liquid layer thickness required for the upward transport of the liquids were determined. The critical airflow rate was in the Reynolds number (Re) range of 142–1,132 in the 0.5-cm-ID tube model and 708–2,830 in the 1.0-cm-ID tube model depending on the types of liquids tested. In both models, the critical airflow rate was lower with viscoelastic liquids than with viscous oils. The critical liquid layer thickness ranged from 0.2 to 0.5 mm in the 0.5-cm-ID tube model and 0.8 to 1.4 mm in the 1.0-cm-ID tube model at Re of 2,800. These values decreased rapidly with increasing airflow rate. The critical thickness relative to the tube diameter ranged from 3 to 15% of the respective tube diameter and was lower by approximately 30–50% in the 0.5-cm-ID tube model than in the 1.0-cm-ID tube model over the entire Re range tested. The results indicate that the critical conditions for the mucus transport by two-phase gas-liquid flow mechanism are within the range that can be achieved in patients with bronchial hypersecretions during normal breathing.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3569-3576
Author(s):  
Grzegorz Ligus ◽  
Maciej Masiukiewicz ◽  
Stanisław Anweiler ◽  
Marek Wasilewski

Energy efficiency is a key issue of sustainable development. During the design of industrial devices, it strives to achieve the highest possible energy efficiency. In the industrial systems, two-phase flow is a difficult task, especially the prediction, and maintenance of the two-phase flow regime. That is why this research proposes the evaluation and choice of an algorithm that will give a hint of the device design for which the hydrodynamic conditions of the two-phase mixture flow may be evalu-ated. The tests were carried out in a rectangular vertical narrow channel, as this type of device is in common use. The work aimed to show which algorithm is better for such evaluation. Parameters such as pressure drop, heat, mass, and momentum transfer are influenced by the phase velocity field. Still, various models are used for the determination of the velocity field. Therefore, there is a problem of choosing a model that will give the results closest to the real conditions. Flow visualization gives the non-invasive determination of the actual velocity field. An analysis of the velocity field was performed, which showed that for different two-phase flow regimes there are differences for given algorithms. The following algorithms were used to determine the velocity vector field: adaptive correlation method and adaptive particle image velocity method were used which are the parts of the general digital particle image velocimetry. The determination of the velocity fields in the quantitative and qualitative assessment of a given two-phase flow re-gime was obtained. The result of the research is the evaluation of algorithms for characterization two-phase gas-liquid flow.


2001 ◽  
Vol 123 (3) ◽  
pp. 580-588 ◽  
Author(s):  
M. Gerendas ◽  
S. Wittig

The presented work is concerned with two-phase flows similar to those in prefilming airblast atomizers and combustors employing film vaporization. Correlations for the multicomponent mixture properties and models for the calculations of the multicomponent evaporation were implemented in a well tested elliptic finite-volume code GAP-2D (S. Wittig et al., 1992, “Motion and Evaporation of Shear-Driven Liquid Films in Turbulent Gas,” ASME J. Eng. Gas Turbines Power 114, pp. 395–400) utilizing time-averaged quantities, k,ε turbulence model, wall functions, and curve-linear coordinates in the gas phase, adiabatic or diabatic conditions at the film plate, partially turbulent velocity profile, uniform temperature, and a rapid mixing approach in the wavy film. This new code GAP-2K was tested for stability, precision, and grid independence of the results by applying it to a turbulent hot air flow over a two-component liquid film, a mixture of water and ethanol in different concentrations. Both simulations and experiments were carried out over a wide range of inlet conditions, such as inlet pressure (1–2.6 bar), inlet temperature (298–573 K), inlet air velocity (30–120 m/s), initial liquid flow rate (0.3–1.2 cm2/s), and initial ethanol concentration (20–75 percent mass). Profiles of temperature, gas velocity, and concentration of the evaporating component normal to the film, and the development of the film temperature, the static pressure, the liquid flow rate, and the liquid compound along the film plate have been measured and compared with the simulation, showing a good match.


1993 ◽  
Vol 47 (8) ◽  
pp. 1209-1213
Author(s):  
Michał H. Jamróz ◽  
Jan Cz. Dobrowolski

The autostandard method is a new analytical method based on the relationship between intensities of certain bands and a number of specific oscillators in molecules. This method, complementary to the known ratio method, is used for a quick determination of the component contents of a chemical system under difficult experimental situations, when the layer thickness cannot be determined (e.g., polymer films and other solids of irregular surfaces, very viscous liquid films, mulls in nujol).


2015 ◽  
Vol 25 (9) ◽  
pp. 795-817 ◽  
Author(s):  
Mika P. Jarvinen ◽  
A. E. P. Kankkunen ◽  
R. Virtanen ◽  
P. H. Miikkulainen ◽  
V. P. Heikkila

Sign in / Sign up

Export Citation Format

Share Document