Laboratory Study on the Relationships Between Suspended Sediment Concentration and Electrical Conductivity

Author(s):  
Qian Dai ◽  
Hongxian Shan ◽  
Yonggang Jia ◽  
Xiangmei Meng ◽  
Honglei Li ◽  
...  

In order to find a simple, continuous method to determine the suspended sediment concentration in a high turbidity region, experiments were conducted to look for relationships between suspended sediment concentration and electrical conductivity. Sediments were sampled from the Yellow River Delta and a conductivity sensor was used to measure the electrical conductivity of different sediment content seawater. The influencing factors such as temperature and salinity are also investigated. The results show that good linear relationships exist between suspended sediment concentration and electrical conductivity; salinity and temperature have some influence on electrical conductivity, and salinity is the most important influencing factor and temperature takes the second place. Basically, the general linear regression formulas between suspended sediment concentration and electrical conductivity can be drawn with variable salinity and temperature. The relationships suggest that it is feasible to measure suspended sediment concentration in situ using electrical conductivity sensors.

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 845 ◽  
Author(s):  
Bowen Li ◽  
Yonggang Jia ◽  
J. Paul Liu ◽  
Xiaolei Liu ◽  
Zhenhao Wang

Historically, the Yellow River in China discharges > 1 × 109 ton/yr sediment to the sea, and has formed a large delta in the western Bohai Sea. Its river mouth is characterized by an extremely high suspended sediment concentration (SSC), up to 50 g/L. However, the hydrodynamic factors controlling the high suspended sediments in the Yellow River estuary are not well understood. Here, we conducted two hydrodynamic observations and SSC measurements in the winter and spring low-flow seasons of 2014–2015 and 2016–2017 under five sea conditions, including calm-rippled, smooth-wavelet, slight, moderate, and rough, in the Yellow River Delta-front during the observation period. Under calm-rippled conditions, the contribution of currents to the total resuspended sediment concentration (RSC) was 77.7%–100.0%. During the smooth-wavelet and slight periods, the currents’ contribution decreased as low as 30% and 3.0% of the total RSC, respectively. Under moderate and rough-sea conditions, waves accounted for at least 70% and 85% of the total RSC, respectively. The results indicate that 20 cm-thick lutoclines were created after a significant increase in the wave height to a peak value followed by a decrease. When the SSC is over 3 g/L and hydrodynamic conditions could not break the lutoclines, the flocculent settling of suspended sediment changes to hindered settling in the Yellow River Delta. Under hindered settling, the settling velocity decreases, and the resuspended sediments remains in the lutoclines and their lower water layers. This study reveals different controlling factors for the high SSC near a river-influenced delta, and helps us get a better understanding of a delta’s resuspension and settling mechanisms.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3296
Author(s):  
Yunwei Wang ◽  
Yun Peng ◽  
Zhiyun Du ◽  
Hangjie Lin ◽  
Qian Yu

In environments of high suspended sediment concentration (SSC > 1 kg/m3), efficient measurements of SSC through accurate calibration relationships between turbidity and SSC are necessary for studies on marine sediment dynamics. Here, we investigated the performance of three types of optical instrument (OBS-3A, AQUAlogger 310TY, and RBRsolo3Tu with Seapoint sensor) in observations carried out at the middle of the Jiangsu coast, China. These instruments were calibrated in the lab using the water and suspended sediment samples collected from the observation site. It was found that both the calibration curves of OBS-3A and RBRsolo3Tu have an inflection point (at SSC of ca. 15 kg/m3 for OBS-3A and ca. 2 kg/m3 for RBRsolo3Tu), on either side of which turbidity increases (the left side) or decreases (the right side) with the increasing SSC. Only under SSCs smaller than the inflection point can OBS-3A and RBRsolo3Tu be applied to continuous SSC measurements at a fixed point. However, the turbidity output of AQUAlogger 310TY has always a positive correlation with SSC, which applies for SSC up to 40 kg/m3; thus, three fluid-mud events are quantified during this observation. AQUAlogger 310TY has important prospects for field applications in high-SSC environments.


1995 ◽  
Vol 41 (138) ◽  
pp. 290-304 ◽  
Author(s):  
C.F. Raymond ◽  
R.J. Benedict ◽  
W.D. Harrison ◽  
K. A. Echelmeyer ◽  
M. Sturm

AbstractCharacteristics of the hydrology and motion of Black Rapids and Fels Glaciers, Alaska, were observed from 1986 to 1989. Hydrological measurements included stage, electrical conductivity and suspended-sediment concentration in the discharge stream of each glacier, and were made at 0.5–1 h intervals continuously through most of the melt seasons. Variations in the glacier speed were monitored through the full year at a number of locations along the length of each glacier using time-lapse photography (1 d time resolution), strain meters (0.5–1 h resolution) and seismometers set up to count acoustic emissions. Both glaciers show similar seasonal, diurnal and short-term event changes in hydrological discharges and ice speed. The hydrological behavior is analyzed in terms of a “fast” sub-system composed of surface streams, moulins and large tunnels with discharge that responds rapidly and a “slow” sub-system composed of heterogeneous small passageways through the ice and distributed over the bed that maintain approximately uniform discharge over a day. The liming and amplitude of water discharge in the diurnal cycle indicate that roughly 10–40% of the water is routed directly into the fast system. The remaining 90–60% of the water enters the slow system. Dilution of the solute discharged from the slow system by the variable discharge in the fast system results in changes in water discharge and solute concentration that are approximately equal in relative amplitude and inversely related. A small time lag from discharge maximum (minimum) to solute minimum (maximum) suggests that the fast system is confined to roughly the lowermost 30–40% of the full glacier length. The residence time of water in the fast system is short compared to 1 d. The slow system contains both short- and long-residence time passages. Characteristics of the diurnal cycles are somewhat variable through the melt season, but no systematic evolutionary patterns were discerned even though large changes in the mean discharges of water and solutes occur, which suggests parallel evolution of the variables that control the response of the fast system. Events were characterized by contemporaneous increases in suspended-sediment concentration in the discharge water and distinct changes in straining on the glaciers. Events caused by-increases in melt or precipitation related to weather and events related to release from reservoirs internal to the glaciers could be distinguished based on the changes in electrical conductivity of the discharge water. The correlated changes in sediment discharge and motion of the glaciers indicate that the events were associated with temporary modifications of the slow passages distributed over the bed that allowed enhanced sliding and access of basal water flow to erosion products. Hydrological differences between Black Rapids and Fels Glaciers can be explained by differences in the size of the glaciers. If there is a difference in bed structure that explains the difference in dynamics (surge — Black Rapids Glacier - versus non-surge - Fels Glacier), it does not affect the hydrological parameters that were observed.


2018 ◽  
Vol 22 (3) ◽  
pp. 1767-1773 ◽  
Author(s):  
Nicholas Voichick ◽  
David J. Topping ◽  
Ronald E. Griffiths

Abstract. Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is “pegged”; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant “pegged” value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay “pegged” at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing “false” turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.


1995 ◽  
Vol 41 (138) ◽  
pp. 290-304 ◽  
Author(s):  
C.F. Raymond ◽  
R.J. Benedict ◽  
W.D. Harrison ◽  
K. A. Echelmeyer ◽  
M. Sturm

AbstractCharacteristics of the hydrology and motion of Black Rapids and Fels Glaciers, Alaska, were observed from 1986 to 1989. Hydrological measurements included stage, electrical conductivity and suspended-sediment concentration in the discharge stream of each glacier, and were made at 0.5–1 h intervals continuously through most of the melt seasons. Variations in the glacier speed were monitored through the full year at a number of locations along the length of each glacier using time-lapse photography (1 d time resolution), strain meters (0.5–1 h resolution) and seismometers set up to count acoustic emissions. Both glaciers show similar seasonal, diurnal and short-term event changes in hydrological discharges and ice speed. The hydrological behavior is analyzed in terms of a “fast” sub-system composed of surface streams, moulins and large tunnels with discharge that responds rapidly and a “slow” sub-system composed of heterogeneous small passageways through the ice and distributed over the bed that maintain approximately uniform discharge over a day. The liming and amplitude of water discharge in the diurnal cycle indicate that roughly 10–40% of the water is routed directly into the fast system. The remaining 90–60% of the water enters the slow system. Dilution of the solute discharged from the slow system by the variable discharge in the fast system results in changes in water discharge and solute concentration that are approximately equal in relative amplitude and inversely related. A small time lag from discharge maximum (minimum) to solute minimum (maximum) suggests that the fast system is confined to roughly the lowermost 30–40% of the full glacier length. The residence time of water in the fast system is short compared to 1 d. The slow system contains both short- and long-residence time passages. Characteristics of the diurnal cycles are somewhat variable through the melt season, but no systematic evolutionary patterns were discerned even though large changes in the mean discharges of water and solutes occur, which suggests parallel evolution of the variables that control the response of the fast system. Events were characterized by contemporaneous increases in suspended-sediment concentration in the discharge water and distinct changes in straining on the glaciers. Events caused by-increases in melt or precipitation related to weather and events related to release from reservoirs internal to the glaciers could be distinguished based on the changes in electrical conductivity of the discharge water. The correlated changes in sediment discharge and motion of the glaciers indicate that the events were associated with temporary modifications of the slow passages distributed over the bed that allowed enhanced sliding and access of basal water flow to erosion products. Hydrological differences between Black Rapids and Fels Glaciers can be explained by differences in the size of the glaciers. If there is a difference in bed structure that explains the difference in dynamics (surge — Black Rapids Glacier - versus non-surge - Fels Glacier), it does not affect the hydrological parameters that were observed.


Sign in / Sign up

Export Citation Format

Share Document