Dynamic Response Research of Ship/Jacket Platform Collision

Author(s):  
Jin Gan ◽  
Weiguo Wu ◽  
Jin Pan ◽  
Huanxiang Sun ◽  
Mengwei Zhu

In this paper, a new simplified finite element model is proposed for ship-jacket platform collision. This model can achieve all kinds of concerned parameters and time history curves through once calculation. This paper also discusses the effect of stain rate in ship-platform collision. On the basis of the above work, finite element numerical simulation of ship-platform collision is carried out. Some important results such as collision forces, stress, local deformations, distribution of various energies and displacement of platform are discussed. At last, some useful conclusions are achieved.

2013 ◽  
Vol 579-580 ◽  
pp. 845-850
Author(s):  
Ruo Meng Chen ◽  
Wurikaixi Aiyiti ◽  
Juan Wang

According to the numerical simulation of femoral injury, this paper created femoral finite element model from medical image of CT scan, simulated the deformation and stress distribution of femur under complex stress, explored the application of digital bone scientific for femoral injury, analyzed the characteristics of stress distribution on bone under complex loads with the medical image reconstruction technology and the finite element numerical simulation technology, and it can play a guiding role in the research on the injury mechanism of femur under complex loads.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2090-2094
Author(s):  
Bin Jia ◽  
Xiao Wei Zhu ◽  
Zhu Wen ◽  
Qi Jiang

The finite element model was established in this paper to study the process of dynamic response of RC frame structure under internal explosive loading. The burst point in the model was located in the center of the frame structure .The article analyzed the process of the dynamic response of the frame structure in the explosive environment and the result of the numerical simulation accorded well with the test. The result showed that the finite element model was feasible as well as providesed reference to the design and protection for the building structure.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Halil Nohutcu

Historical structures are the values that are of great importance to that country, showing the roots of a country, and must be passed on from generation to generation. This study attempts to make a contribution to this goal. Seismic damage pattern estimation in a historical brick masonry minaret under different ground motion levels is investigated by using updated finite element models based on ambient vibration data in this study. Imaret Mosque which was built in 1481 AD is selected for an application. Surveying measurement and material tests were conducted to obtain a 3D solid model and mechanical properties of the components of the minaret. Firstly, the initial 3D finite element model of the minaret was analyzed and numerical dynamic characteristics of the minaret were obtained. Then, ambient vibration tests as well as operational modal analysis were implemented in order to obtain the experimental dynamic characteristics of the minaret. The initial finite element model of the minaret was updated by using the experimental dynamic results. Lastly, linear and nonlinear time-history analyses of the updated finite element model of the minaret were carried out using the acceleration records of two different level earthquakes that occurred in Turkey, in Afyon-Dinar (1995) and Çay-Sultandağı (2002). A concrete damage plasticity model is considered in the nonlinear analyses. The conducted analyses indicate that the compressive and tension stress results of the linear analyses are not as realistic as the nonlinear analysis results. According to the nonlinear analysis, the Çay-Sultandağı earthquake would inflict limited damage on the minaret, whereas the Dinar earthquake would damage some parts of the elements in the transition segment of the minaret.


2012 ◽  
Vol 535-537 ◽  
pp. 2012-2016
Author(s):  
Da Feng Gao ◽  
Peng Fei Li ◽  
Lei Wang

Based on the rich previous experimental data, the multi-storey ancient Chinese timber structure shangyou tower of palace style was studied. ANSYS10.0 software was used to establish the finite element models. One finite element model of large wooden frame was established by applying semi-rigid spring element to simulate the joint of mortise-tenon, tou-kung and the connection on column foot in the real wooden structure. The other finite element model of antique building corresponding to the finite element model above was established. The first 10 inherent frequencies and vibrations of the two models were obtained by the method of Block Lanczos with full transient analysis. The model displacement and acceleration time history curves were obtained by taking the two models subjected to El-Centro ground motion, Taft ground motion and Lanzhou artificial ground motion excitation. By the results analysis of the two models, it can be find that the vibration isolation performance of the ancient Chinese timber structure mainly manifests in the column foot, tenon and mortise connection and the tou-kung layer.


Sign in / Sign up

Export Citation Format

Share Document