The Effect of Whipping/Springing on Fatigue Damage and Extreme Response of Ship Structures

Author(s):  
Wengang Mao ◽  
Jonas W. Ringsberg ◽  
Igor Rychlik

Wave-induced vibrations, also known as whipping and springing, are defined as the high frequency response of ship structures. In this paper, the fatigue damage caused by whipping and springing is presented by investigating the amidships section of a 2800 TEU container ship that operates in the North Atlantic Ocean. A simplified fatigue model, originally from the generalized narrow-band approximation for Gaussian load, is employed to include the damage contribution from wave-induced vibrations. In this model, the significant response range hs and the mean stress up-crossing frequency fz are simplified using only the wave-induced loading and encountered wave frequency, respectively. The capacity and accuracy of the model is illustrated by application on the measurements of the 2800 TEU container ship for different voyages during 2008. The whipping-induced contribution to the extreme response is investigated by means of the level crossing approach. It shows that the level crossing model for Gaussian load cannot be used for the prediction of extreme responses, such as the 100-year stress, based on a half-year full-scale measurement. It is found that a more complicated non-Gaussian model is required to consider the contribution from whipping.

Author(s):  
Zhiyuan Li ◽  
Jonas W. Ringsberg ◽  
Wengang Mao

The traditional method to assess fatigue damage of ship structures assumes moderate wave amplitudes and linear responses. This method can be questioned when applied on container ships that are characterized by large deck openings, because the low torsion rigidity of this type of ship makes it sensitive to oblique waves. In this paper, the 3D hydrodynamic code WASIM is used to simulate a 4400 TEU container ship operating in the North Atlantic Ocean. Nonlinear wave loads are utilized for direct calculation of the stress histories under severe sea states. The warping stress from wave-induced torsion is separated from the stress components from vertical and horizontal bending. The contribution to fatigue damage accumulation from warping stresses is evaluated. For comparison, the results from the numerical simulations and fatigue calculations are verified with full-scale measurements made on a similar type of container vessel.


Author(s):  
Gaute Storhaug ◽  
Torgeir Moan

Wave induced vibrations often referred to as springing and/or whipping increase the fatigue and extreme loading in ship hull girders. Both effects are disregarded in current ship rules. Various numerical codes exist for predicting the wave induced vibrations, but so far they are not considered reliable. Another means to investigate the importance of the high frequency response, although more resource demanding, is to carry out full scale measurements and/or model tests. Recently, full scale measurements of blunt ships have been carried out by DNV, and in this paper one of these ships was considered and tested in a towing tank to evaluate the additional fatigue damage due to the wave induced vibrations. Different excitation sources may excite the 2-node vertical vibration mode depending on ship design, and it is not straight forward to determine which is more important. The relative importance of the excitation mechanisms are investigated by two approaches in this paper. The first approach separates the whipping from springing to illustrate their relative importance based on basic theory in combination with model test results. The linear and second order transfer functions are utilized in this procedure. The second approach deals with the effect of the bow design on the additional fatigue damage. Three different bows were tested. The first bow design is identical to the real ship. The second bow design is a simplified version of the first one, by removing the bulb and flare. The third bow is fundamentally different from the two former blunt bows. Bow three is sharp pointed with a vertical sharp stem and vertical ship sides. The results indicate that the importance of whipping depends on the sea state, but that it is of similar importance as springing for the sea states that contributes most to the fatigue damage. Moreover, the difference in the additional fatigue damage due to wave induced vibrations for different bow shapes is moderate. This indicates that vessels with pointed bows and without pronounced bow flare, such as LNG vessels, may have a similar contribution from wave induced vibrations. Modern container vessels, which are more slender, but with pronounced bow flares should be further investigated.


2012 ◽  
Vol 56 (01) ◽  
pp. 23-34
Author(s):  
Wengang Mao ◽  
Igor Rychlik

In practice the severity of ship response is measured by high quantiles of long-term distribution of the response. The distribution is estimated by combining the short-term distribution of the response with a long-term probability distribution of encountered sea states. The paper describes an alternative approach, the so-called Rice's method, based on estimation of expected number of upcrossings of high levels by stress during 1 year. The method requires description of long-term variability of the standard deviation, skewness, kurtosis, and zero upcrossing frequency of ship response. It is assumed that the parameters are functions of encountered significant wave height, heading angle, and ship speed. The relation can be estimated from the measured stresses or computed by dedicated software assuming rigid ship hull model. Then Winterstein's transformed Gaussian model is used to estimate the upcrossing rates of response during a sea state. The proposed method is validated using the full-scale measurements of a 2,800 TEU container ship during the first 6 months of 2008. Numerical estimation of 4,400 TEU container ship extreme of the extreme response for a 4400 TEU container ship illustrates the approach when no measurements are available.


Author(s):  
Wengang Mao ◽  
Zhiyuan Li ◽  
Thomas Galtier ◽  
Jonas W. Ringsberg ◽  
Igor Rychlik

The hydrodynamic analysis of a 4400 TEU container ship with constant forward speed is carried out by the nonlinear numerical code WASIM in the time domain under severe sea states. Straightforward fatigue estimation is performed using the rainflow counting approach based on simulated time series of stresses. The narrow-band approximation, which has been validated in previous work with good accuracy by full-scale measurement of a 2800 TEU container ship, is implemented to estimate the fatigue damage based on the same responses. It is concluded that a slight deviation from the Gaussian process does not influence the fatigue estimation by narrow-band approximation. In addition, extreme response is defined by the level up-crossing approach. The Gaussian crossing model using Rice’s formula is employed to predict the extreme response based on the responses from above numerical analysis. It shows that the Gaussian model is not suitable for this prediction. A more complicated level crossing model is proposed which is based on the Laplace Moving Average method. Its accuracy in prediction of extreme responses is analyzed and presented with good agreement by means of numerical simulations.


Author(s):  
Wengang Mao ◽  
Fredhi Agung Prasetyo ◽  
Jonas W. Ringsberg ◽  
Naoki Osawa

In the maritime industry, fatigue failure is one of the most significant failure modes for ship structures. The fatigue damage in ship structures is mainly caused by the variation of wave loadings applied on ships, leading to variable structural stresses. Therefore, a reliable description of wave environments encountered during a ship’s service life is essential for accurate fatigue assessment of ship structures. Besides the wave scatter diagram provided by classification society rules, different statistical wave models have also been built up to model wave environments along arbitrary ship routes. The wave models could provide more specific wave environment for any chosen sailing routes of an individual ship. They may have the potential to be used for some practical applications, such as conceptual ship fatigue design, remaining fatigue life prediction when a ship plans to change its original trade region, and crack maintenance planning etc. Since the development of these models may be based on different sources, e.g. satellite measurements, hindcast data, buoys, etc., the reliability and consistence of wave generations from various wave models must be validated by the measured wave environments in order to be used for those practical applications. In this paper, waves generated from two different wave models, one based on hindcast data and one mainly on satellite data, are compared with measured wave environments encountered by a 2800 TEU container vessel on the North Atlantic route. These wave models are used in the calculation of the fatigue damage in the vessel. The results obtained using waves generated from the two wave models are compared with the fatigue damage calculated based on strain measurements in the ship. Recommendations for future development of the wave models and further investigation to make the applications more realistic for ship fatigue assessment are also presented.


1994 ◽  
Vol 7 (6) ◽  
pp. 499-535 ◽  
Author(s):  
J. Xue ◽  
A. Pittaluga ◽  
D. Cervetto

Author(s):  
Adekunle Peter Orimolade ◽  
Daniel Karunakaran ◽  
Trond Stokka Meling

Steel catenary risers (SCRs) have found greater applications in deep and ultra-deepwater developments. However, the deployment of SCRs in conjunction with a high motion deepwater floater such as the Floating Production Storage and Offloading (FPSO) system faces significant challenges due to their high motion characteristics, especially in harsh environmental conditions. The challenges posed by FPSO’s high motion characteristics include severe dynamic response on the SCRs and poor fatigue performance at the top section and the touchdown point (TDP) area. A number of alternative configurations of the SCR can be employed to decouple the FPSO’s motion from the SCR, thereby improving performance, and this include the steel lazy wave riser (SLWR) configuration. The lazy wave is achieved by introducing buoyancy modules along some lengths of the riser. In this work, a suitable SLWR configuration for deployment in conjunction with a turret moored FPSO was developed for a typical deepwater offshore West of Shetland environmental conditions. The optimum configuration is a low lazy wave configuration; this was achieved after several analyses using ORCAFLEX software program. In determining the optimum configuration, consideration is given to the SLWR sag and hog bend heights, the net buoyancy force, the buoyant section length, and the hang-off angle, among others. The extreme response, considering a combination of 100-year wave with 10-year current was satisfactory; the maximum stress was below the allowable stress level, and the maximum DNV utilization was less than unity, indicating a safe design. The wave-induced fatigue damage was calculated using a total of 216 load cases, resulting from 12-wave directions, and the wave-induced fatigue performance was satisfactory, with the minimum fatigue life observed at the riser’s TPD. Fatigue damage resulting from vortex induced vibration (VIV) was calculated considering currents in the in-plane and the out-of-plane directions to the riser, with a total of 22 load cases. The VIV fatigue performance was not satisfactory, and therefore fairings and strakes will be introduced to some lengths of the SLWR to suppress VIV. Detailed sensitivity studies also showed how the configuration can be further optimized. Overall, the results of this study showed that, the SLWR is a suitable riser concept for deployment from a turret moored FPSO, in deepwater, harsh environmental conditions such as offshore West of Shetland. The riser can be installed using Reeled-Lay installation method. The installation can be performed using pre-lay, abandonment, and recovery, as this offers advantages over the direct transfer approach.


Author(s):  
Gaute Storhaug ◽  
Jan Mathisen ◽  
Svein Erling Heggelund

Ships vibrate due to waves, and these wave induced vibrations can not easily be avoided by moderate changes to the hull lines. The waves may cause the whole hull girder to vibrate due to springing (resonance) and whipping (transient response), which increase the fatigue and extreme loading. Recently this has also become an industry concern. Modern hull monitoring systems in combination with model tests are the best tools to answer the key questions: How important is the wave induced vibrations, and does it have to be included in design? This paper addresses the effect of whipping on the extreme loading. Measurements have been carried out on two container vessels operating in the North Atlantic. An elastic model of the larger vessel has also been tested. Results are obtained at quarter lengths and amidships. From the measurements the increase due to whipping is considerable, even though the wave conditions are not extreme. The full scale measurements and model test show that IACS URS11 rule loads may be exceeded in less than extreme sea states, in particularly amidships and in the aft ship. The IACS UR S11 may need revision for container ship design. MAIB’s report based on the investigation of the MSC Napoli incident (vessel broke in two) also recommends increased requirements for container ship design and further research into the effect of whipping.


Sign in / Sign up

Export Citation Format

Share Document