Estimation of Wave Loading Induced Fatigue Accumulation and Extreme Response of a Container Ship in Severe Seas

Author(s):  
Wengang Mao ◽  
Zhiyuan Li ◽  
Thomas Galtier ◽  
Jonas W. Ringsberg ◽  
Igor Rychlik

The hydrodynamic analysis of a 4400 TEU container ship with constant forward speed is carried out by the nonlinear numerical code WASIM in the time domain under severe sea states. Straightforward fatigue estimation is performed using the rainflow counting approach based on simulated time series of stresses. The narrow-band approximation, which has been validated in previous work with good accuracy by full-scale measurement of a 2800 TEU container ship, is implemented to estimate the fatigue damage based on the same responses. It is concluded that a slight deviation from the Gaussian process does not influence the fatigue estimation by narrow-band approximation. In addition, extreme response is defined by the level up-crossing approach. The Gaussian crossing model using Rice’s formula is employed to predict the extreme response based on the responses from above numerical analysis. It shows that the Gaussian model is not suitable for this prediction. A more complicated level crossing model is proposed which is based on the Laplace Moving Average method. Its accuracy in prediction of extreme responses is analyzed and presented with good agreement by means of numerical simulations.

Author(s):  
Wengang Mao ◽  
Jonas W. Ringsberg ◽  
Igor Rychlik

Wave-induced vibrations, also known as whipping and springing, are defined as the high frequency response of ship structures. In this paper, the fatigue damage caused by whipping and springing is presented by investigating the amidships section of a 2800 TEU container ship that operates in the North Atlantic Ocean. A simplified fatigue model, originally from the generalized narrow-band approximation for Gaussian load, is employed to include the damage contribution from wave-induced vibrations. In this model, the significant response range hs and the mean stress up-crossing frequency fz are simplified using only the wave-induced loading and encountered wave frequency, respectively. The capacity and accuracy of the model is illustrated by application on the measurements of the 2800 TEU container ship for different voyages during 2008. The whipping-induced contribution to the extreme response is investigated by means of the level crossing approach. It shows that the level crossing model for Gaussian load cannot be used for the prediction of extreme responses, such as the 100-year stress, based on a half-year full-scale measurement. It is found that a more complicated non-Gaussian model is required to consider the contribution from whipping.


2012 ◽  
Vol 56 (01) ◽  
pp. 23-34
Author(s):  
Wengang Mao ◽  
Igor Rychlik

In practice the severity of ship response is measured by high quantiles of long-term distribution of the response. The distribution is estimated by combining the short-term distribution of the response with a long-term probability distribution of encountered sea states. The paper describes an alternative approach, the so-called Rice's method, based on estimation of expected number of upcrossings of high levels by stress during 1 year. The method requires description of long-term variability of the standard deviation, skewness, kurtosis, and zero upcrossing frequency of ship response. It is assumed that the parameters are functions of encountered significant wave height, heading angle, and ship speed. The relation can be estimated from the measured stresses or computed by dedicated software assuming rigid ship hull model. Then Winterstein's transformed Gaussian model is used to estimate the upcrossing rates of response during a sea state. The proposed method is validated using the full-scale measurements of a 2,800 TEU container ship during the first 6 months of 2008. Numerical estimation of 4,400 TEU container ship extreme of the extreme response for a 4400 TEU container ship illustrates the approach when no measurements are available.


Author(s):  
F. Trarieux ◽  
G. J. Lyons

The application of a method for fatigue damage assessment applied to the relative effects of mooring, wave, and Vortex Induced Vibration (VIV) is presented. It is a simpler procedure than rainflow counting and uses a bandwidth parameter with standard deviation applied to modify narrow band fatigue estimation. This bandwidth parameter has been successfully applied by the authors to investigate in detail the curvature (bending stress) response of the Foinaven lazy-wave umbilical for investigations into VIV. This parameter is valuable since as a single value it may be used to track the variation of bandwidth response with time and against other measures such as varying current speed. The method is conveniently based on a peak counting approach. Low values close to zero indicate a narrow band process whereas values near unity indicate a broad-band process. It is a much better measure than kurtosis for determining bandwidth. Curvature and environmental data were gathered by the Foinaven Umbilical Monitoring System installed on the Foinaven Petrojarl IV floating production unit located in the Altantic margin, West of Shetland. The VIV frequency range owing to current excitation considered is that which is considered as being above consequential wave frequencies (0.2 to 2Hz). This paper presents results of fatigue damage assessment for the periods where a strong variation of bandwidth was observed. 64 records (each lasting about 10 minutes) representing a daily acquisition of about 8 hours were processed showing the correlation between the bandwidth of curvature and the amount of fatigue experienced by the umbilical. Strong VIV regimes are often characterized by an intense activity around a particular frequency and the impact of such narrow-band events on the fatigue life of the structure is clearly demonstrated. This paper also presents the relative contributions of mooring, and waves/vessel motions, and VIV to fatigue damage. Although wave excitation remains the main source of fatigue, VIV appears to potentially contribute to a significant part of the overall fatigue damage.


2013 ◽  
Vol 30 (11) ◽  
pp. 2571-2584 ◽  
Author(s):  
Cuong M. Nguyen ◽  
V. Chandrasekar

Abstract The Gaussian model adaptive processing in the time domain (GMAP-TD) method for ground clutter suppression and signal spectral moment estimation for weather radars is presented. The technique transforms the clutter component of a weather radar return signal to noise. Additionally, an interpolation procedure has been developed to recover the portion of weather echoes that overlap clutter. It is shown that GMAP-TD improves the performance over the GMAP algorithm that operates in the frequency domain using both signal simulations and experimental observations. Furthermore, GMAP-TD can be directly extended for use with a staggered pulse repetition time (PRT) waveform. A detailed evaluation of GMAP-TD performance and comparison against the GMAP are done using simulated radar data and observations from the Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) radar using uniform and staggered PRT waveform schemes.


2016 ◽  
Vol 60 (02) ◽  
pp. 92-100
Author(s):  
Oleg Gaidai ◽  
Gaute Storhaug ◽  
Arvid Naess

The paper describes a method for prediction of large container ship extreme roll angles occurring during sailing in harsh weather. Rolling is coupled with other ship motions and exhibits highly nonlinear behavior. Risk of losing containers due to a large roll is primary concern for ship transport. Because of non-stationarity and complicated nonlinearities of both waves and ship motions, it is a considerable challenge to model such a phenomenon. In case of extreme motions, the role of nonlinearities dramatically increases, activating effects of second and higher order. Moreover, laboratory tests may also be questioned because of the scaling and the sea state choice. Therefore, data measured on actual ships during their voyages in harsh weather provide a unique insight into statistics of ship motions. The aim of this work is to benchmark state of art method, which makes it possible to extract the necessary information about the extreme response from onboard measured time histories. The method proposed in this paper opens up the possibility to predict simply and efficiently both short- and long-term extreme response statistics.


Author(s):  
Hans Fabricius Hansen ◽  
Stefan Carstensen ◽  
Erik Damgaard Christensen ◽  
Jens Kirkegaard

A numerical package for simulating vessel motions in the time domain, WAMSIM, is extended to handle multiple moving bodies interconnected through a nonlinear mooring system. WAMSIM relies on the industry standard program WAMIT to calculate the hydrodynamic characteristics and interaction of multiple bodies in the frequency domain. The numerical code is used to simulate the motions and mooring line and fender forces of two LNG tankers moored side-by-side in shallow water. One of the gas tankers is moored to the sea floor through a turret with chain catenaries. Realistic short-crested irregular waves obtained from a Boussinesq wave model are used to force the model. Motion spectra of the simulated motions are compared to measured motions from physical scale model tests. The model shows good agreement with measured motions and mooring line forces.


Author(s):  
Vaclav Slama ◽  
Bartolomej Rudas ◽  
Ales Macalka ◽  
Jiri Ira ◽  
Antonin Zivny

Abstract An advanced in-house procedure, which is based on a commercial numerical code, to predict a potential danger of unstalled flutter has been developed and validated. This procedure using a one way decoupled method and a full-scale time-marching 3D viscous model in order to obtain the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations in the time domain thus calculate an aerodynamic work and a damping ratio is used as an essential tool for developing ultra-long last stage rotor blades in low pressure turbine parts for modern steam turbines with a large operating range and an enhanced efficiency. An example is shown on a development of the last stage blade for high backpressures.


Author(s):  
Michel Olagnon ◽  
Zakoua Gue´de´

Rainflow counting is widely accepted as the method that is most suited to analysis of fatigue damage of materials submitted to irregular loading. Formulas such as the Wirsching-Light and the Dirlik one allow to take into account spectral shape and bandwidth in an empirical or semi-empirical manner to obtain a best estimate damage reduction of the rainflow counting with respect to the narrow-band approximation. However, if one considers parametric shape families of common use for the spectra, a more straightforward way is to make damage depend on the shape parameter of the family rather than on the spectral moments. We provide here such semi-empirical parametric formulas for the Jonswap, Wallops, Triangle and Power-tail families. In addition, the ICA formula allows us to extend the above formulas to the well-known bimodal spectral shape proposed by Ochi-Hubble.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Weiqin Liu ◽  
Xuemin Song ◽  
Weiguo Wu ◽  
Katsuyuki Suzuki

Extreme waves have caused a lot of ship accidents and casualties. In this paper, a two-dimensional (2D) hydroelastoplasticity method is proposed to study the nonlinear dynamic responses of a container ship in extreme waves. On the one hand, the traditional ultimate strength evaluation is mainly performed using a quasi-static assumption without considering the dynamic wave effect. On the other hand, the dynamic response of a ship induced by a wave is studied based on hydroelasticity theory, which means the ship structural response to large waves is linear. Therefore, a 2D hydroelastoplasticity method that accounts for the coupling between the time-domain wave and ship beam for nonlinear vertical bending moment (VBM) is proposed. In addition, a nonlinear dynamic finite element method (FEM) is also applied for the nonlinear VBM of ship beam. The computational results of the FEM, including the nonlinear VBM and deformational angle, are compared with the results of the 2D hydroelastoplasticity and hydroelasticity. A number of numerical extreme wave models are selected for computations of hydroelasticity-plasticity, hydroelasticity, and FEM. A difference is observed between the nonlinear VBM calculated by FEM and linear VBM calculated by hydroelasticity, and conclusions are drawn.


Sign in / Sign up

Export Citation Format

Share Document