Elastic Large Deflection Behavior of Plates With Partially Rotation-Restrained Edges

Author(s):  
Jeom Kee Paik ◽  
Do Kyun Kim ◽  
Hoseong Lee ◽  
Yong Lae Shim

The edge condition of the plating in a continuous stiffened-plate structure is neither simply supported nor clamped because the torsional rigidity of the support members at the plate edges is neither zero nor infinite. In a robust ship structural design, it is necessary to accurately take into account the effect of the edge condition in analyses of plate behavior. The aim of this study is to investigate the elastic large deflection behavior of plates with partially rotation-restrained edges in association with the torsional rigidity of the support members and under biaxial compression. An analytical method was developed to solve this problem using the nonlinear governing differential equations of plates. The validity of the developed method was confirmed by the comparison with nonlinear finite element method solutions with varying values for the torsional rigidity of the support members, plate aspect ratio, and biaxial loading ratio. The developed method was found to give very accurate results for the large deflection analysis of plates with partially rotation-restrained edges, and was proved very useful for the robust design of ship structures.

Author(s):  
Jeom Kee Paik ◽  
Do Kyun Kim ◽  
Hoseong Lee ◽  
Yong Lae Shim

The edge condition of the plating in a continuous stiffened-plate structure is neither simply supported nor clamped because the torsional rigidity of the support members at the plate edges is neither zero nor infinite. In a robust ship structural design, it is necessary to accurately take into account the effect of the edge condition in analyses of plate behavior in terms of buckling and post-buckling behavior. The aim of this study is to develop a new method for analyzing the geometric nonlinear behavior (i.e., elastic large deflection or post-buckling behavior) of plates with partially rotation-restrained edges in association with the torsional rigidity of the support members and under biaxial compression. An analytical method was developed to solve this problem using the nonlinear governing differential equations of plates. The validity of the developed method was confirmed by comparison with nonlinear finite element method solutions with varying values for the torsional rigidity of the support members, plate aspect ratio, and biaxial loading ratio. The developed method was found to give reasonably accurate results for practical design purpose in terms of the large deflection analysis of plates with partially rotation-restrained edges, and it will be useful for the robust design of ship structures in association with buckling and ultimate strength of plates surrounded by support members.


Author(s):  
Xiaoli Jiang ◽  
C. Guedes Soares

The aim of the present paper is to investigate the effects of corrosion pits on the ultimate capacity of rectangular mild steel plates under biaxial compression. A series of non-linear FEM analysis on plates with partial depth pits are carried out, changing geometrical attributes of both pits and plates, i.e., the radius, depth, location and distribution of the pits and the slenderness of the plates. Possible interaction between transverse and longitudinal axial compression is studied applying different level of loading ratio and considering the effects of partial depth pitting corrosion. It is shown that biaxial loading ratio is a dominant factor affecting the behavior of pitted plates besides pits intensity and thickness loss at pits. When longitudinal compression is dominant load with loading ratio lower than 1, the interaction relationship curves for different DOP levels tend to be parallel with each other and the distance between every two parallel curves seems to be dependent mainly on the deviation of their DOP values and thickness loss at pits. Moreover, pits distribution along long and shirt edges could also affect the ultimate strength behavior of plates. The work done in the paper illustrates that the ultimate capacity of pitted plate could be derived from intact plate by introducing important influential parameters like DOP, thickness loss and possible pits distribution.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1205
Author(s):  
Hai Qiu ◽  
Ying Li ◽  
Tianfu Guo ◽  
Shan Tang ◽  
Zhaoqian Xie ◽  
...  

Structural topology and loading condition have important influences on the mechanical behaviors of porous soft solids. The porous solids are usually set to be under uniaxial tension or compression. Only a few studies have considered the biaxial loads, especially the combined loads of tension and compression. In this study, porous soft solids with oblique and square lattices of circular voids under biaxial loadings were studied through integrated experiments and numerical simulations. For the soft solids with oblique lattices of circular voids, we found a new pattern transformation under biaxial compression, which has alternating elliptic voids with an inclined angle. This kind of pattern transformation is rarely reported under uniaxial compression. Introducing tensile deformation in one direction can hamper this kind of pattern transformation under biaxial loading. For the soft solids with square lattices of voids, the number of voids cannot change their deformation behaviors qualitatively, but quantitatively. In general, our present results demonstrate that void morphology and biaxial loading can be harnessed to tune the pattern transformations of porous soft solids under large deformation. This discovery offers a new avenue for designing the void morphology of soft solids for controlling their deformation patterns under a specific biaxial stress-state.


2021 ◽  
Vol 11 (5) ◽  
pp. 2379
Author(s):  
Jeong-Hyeon Kim ◽  
Doo-Hwan Park ◽  
Seul-Kee Kim ◽  
Myung-Sung Kim ◽  
Jae-Myung Lee

The curved plate has been extensively used as a structural member in many industrial fields, especially the shipbuilding industry. The present study investigated the ultimate strength and collapse behavior of the simply supported curved plate under a longitudinal compressive load. To do this, experimental apparatuses for evaluating the buckling collapse test of the curved plates was developed. Then, a series of buckling collapse experiments was carried out by considering the flank angle, slenderness ratio, and aspect ratio of plates. To examine the fundamental buckling and collapse behavior of the curved plate, elastoplastic large deflection analysis was performed using the commercial finite element analysis program. On the basis of both the experimental and FE analysis, the effects of the flank angle, slenderness ratio, and aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. Finally, the empirical design formula for predicting the ultimate strength of curved plates was derived. The proposed empirical formula is a good indicator for estimating the behavior of the curved plate.


Sign in / Sign up

Export Citation Format

Share Document