An Innovative Synthetic Mooring Solution for an Octagonal FPSO in Shallow Waters

Author(s):  
Mo Fan ◽  
Da Li ◽  
Tuanjie Liu ◽  
Alex Ran ◽  
Wei Ye

An octagonal FPSO has been proposed for marginal oil and gas development in shallow waters. A shuttle tanker will be deployed near the FPSO during offloading operations. This new concept simplifies the design and manufacturing processes, yet maintains full production, storage, and offloading functions of a conventional ship-shaped FPSO. However, design of the mooring system for this floating unit imposes technical challenges due to: 1) high environmental loads expected on this unit, 2) large dynamic offsets of the unit in shallow waters, and 3) inadequate performance of catenary mooring systems in shallow waters. Thus, development of a viable station keeping solution becomes a key issue to the new concept FPSO design. In this paper, an innovative mooring system is designed to meet the challenges. The FPSO mooring system consists of pile anchors, bridle chains, anchorage buoys, and polyester ropes. Nine mooring lines are grouped into three bundles which evenly spread around the FPSO. The shuttle tanker is attached to the FPSO with a nylon rope hawser at the bow and secured to pre-installed anchorage buoys at the stern with two other nylon ropes. Analyses have been performed for the FPSO mooring system. It is concluded that the proposed mooring system is fully functional and effective.

2021 ◽  
Vol 2087 (1) ◽  
pp. 012028
Author(s):  
Fei Yu ◽  
Yi Su ◽  
Yuliang Liu ◽  
Haibo Liu ◽  
Fei Duan

Abstract The floating photovoltaic power (FPV) station becomes popular to decrease carbon emission. However, limited research has been done on the dynamic response of the mooring lines of the FPV array. Based on a typical 2.14MW FPV array, this study investigates the displacement of the array and the mooring tension of the mooring lines. The numerical model of the FPV array is built through three-dimensional potential theory with 124 mooring lines. Firstly, the effect of the environment on the response is investigated under wave-only, current-only and wind-only conditions. Then, the tension and motion in the combined environmental loads are analyzed. It is found that the wind load has the greatest influence on the motion and mooring tension on the FPV power station, the effect of wave and current on the response is very limited.


2014 ◽  
Vol 21 (3) ◽  
pp. 68-76 ◽  
Author(s):  
Dongsheng Qiao ◽  
Jun Yan ◽  
Jinping Ou

Abstract In the deepwater exploitation of oil and gas, replacing the polyester rope by a wire in the chain-wire-chain mooring line is proved to be fairly economic, but this may provoke some corresponding problems. Te aim of this paper is to compare the fatigue damage of two mooring system types, taking into account corrosion effects. Using a semi-submersible platform as the research object, two types of mooring systems of the similar static restoring stiffness were employed. Te mooring lines had the chain-wire-chain and chain-polyester-chain structure, respectively. Firstly, the numerical simulation model between the semi-submersible platform and its mooring system was built. Te time series of mooring line tension generated by each short-term sea state of South China Sea S4 area were calculated. Secondly, the rain flow counting method was employed to obtain the fatigue load spectrum. Thirdly, the Miner linear cumulative law model was used to compare the fatigue damage of the two mooring system types in long-term sea state. Finally, the corrosion effects from zero to twenty years were considered, and the comparison between the fatigue damage of the two mooring system types was recalculated.


2012 ◽  
Vol 1 (33) ◽  
pp. 3 ◽  
Author(s):  
Luca Martinelli ◽  
Piero Ruol ◽  
Giampaolo Cortellazzo

The design of a mooring system of a Wave Energy Converter is a challenging process that points out several unsolved technical problems, mostly related to the highly non-linear hydrodynamic phenomena occurring when high waves (e.g. 8 m high with 200 m wavelength) propagate in relatively shallow waters (e.g. 20 m). The aim of this note is to point out the relevance of the non-linear response of a WEC anchored in relatively shallow waters (shallow in the “non-linear” sense) in terms of loads applied to the mooring lines. Further, the effects of this cyclic load on the anchors is investigated. Note that to some extent it is like checking the importance of geotechnical and coastal engineers in the design process of the WEC structure and its mooring system (typically carried out by naval architects). The whole mooring design process is first outlined and then it is schematically applied to a specific case, namely a promising Italian device named SeaBreath (www.seabreath.it), in view of a possible deployment in the Adriatic Sea. The main concern of mooring designers is related to resonance effects induced by the second order drift. Therefore specific tests have been carried out in the 36 m long x 1.0 m wide x 1.3 m high wave flume of Padova University. Tests focused on the forces on the mooring lines induced by the sum of two regular waves of similar frequency. The mooring design is still far from complete: the physical model proved the relevance of the aforementioned effects but a numerical investigation (not yet performed) is required to draw final conclusions.


Author(s):  
Lin Li ◽  
Zhiyu Jiang ◽  
Andreas Vangdal Høiland ◽  
Muk Chen Ong

The aquaculture industry is aiming to move fish farms from nearshore areas to open seas because of many attractive advantages in the open water. However, one major challenge is to design the structure to withstand the environmental loads due to wind, waves, and currents. The purpose of this paper is to study a vessel-shaped fish farm concept for open sea applications. The structure includes a vessel-shaped hull, a mooring system, and fish cages. The shape of the hull minimizes the wave loads coming from the bow, and the single-point mooring system is connected to the turret at the vessel bow. Such a system allows the whole fish farm to rotate freely about the turret, reduces the environmental loads on the structure and increases the spread area of fish wastes. A basic geometry of the vessel hull was considered and the hydrodynamic properties were obtained from the frequency-domain (FD) analysis. A mooring system with six mooring lines was designed to avoid possible interactions with the fish cages. Time-domain (TD) simulations were performed by coupling the hull with the mooring system. A simplified rigid model of the fish cages was considered. The global responses of the system and the mooring line loads were compared under various wave and current conditions. The effects due to misalignment of wave and current directions on the responses were discussed. Finally, the responses using flexible and rigid net models were compared under steady current conditions.


2019 ◽  
Vol 16 (6) ◽  
pp. 50-59
Author(s):  
O. P. Trubitsina ◽  
V. N. Bashkin

The article is devoted to the consideration of geopolitical challenges for the analysis of geoenvironmental risks (GERs) in the hydrocarbon development of the Arctic territory. Geopolitical risks (GPRs), like GERs, can be transformed into opposite external environment factors of oil and gas industry facilities in the form of additional opportunities or threats, which the authors identify in detail for each type of risk. This is necessary for further development of methodological base of expert methods for GER management in the context of the implementational proposed two-stage model of the GER analysis taking to account GPR for the improvement of effectiveness making decisions to ensure optimal operation of the facility oil and gas industry and minimize the impact on the environment in the geopolitical conditions of the Arctic.The authors declare no conflict of interest


Sign in / Sign up

Export Citation Format

Share Document