Hull-Mooring Coupled Dynamic Analysis of Two Side-by-Side Operating Vessels

Author(s):  
Mahdi Mirzaei ◽  
Mehdi Shafieefar ◽  
Mohammad Reza Moharrami

This paper contains the results of mooring analyses of two side-by-side operating crane barges in the installation procedure of a jacket type platform in an oil-gas field in the Persian Gulf. Since the vessels are proposed to operate next to a fixed structure, making sure about their displacements and a convenient clearance between them and the jacket is a highly important aspect of the design process. In essence, the analyses consist of setting an appropriate configuration and positioning of the vessels relative to each other, considering a reasonable gap between vessels and the jacket, connecting the vessels together, and studding the behavior of the moored system when it is subjected to a set of environments. In particular, an equilibrium configuration is found when the system is subjected to the mean force of the environment which consists of waves, wind gusts and currents. Then the dynamics of the system about the mean position is investigated. In order to study the influence of a dynamic mooring analysis, two cases are compared; one considering weight and buoyancy as the only forces acting on the lines and carrying out a quasi-static mooring analysis, and the other taking into account the hydrodynamic forces from the mooring lines. An accurate and efficient finite element program for the coupled analysis of the hull-mooring system is used and two types of modeling the connected vessels are compared; one using joints with restraints for all relative motions but in relative roll, and the other using slings and fenders. In all cases, the results of time domain analyses consisting of mooring line loads and motion responses of the vessels are presented in time histories and the statistics are studied.

2013 ◽  
Vol 712-715 ◽  
pp. 1335-1338
Author(s):  
Yan Gang Wang ◽  
Xing Hua Tong ◽  
Lin Sen Zhu ◽  
Yong Liu

In the research of buoy wave power devices, earlier studies have indicated that the vertical cylindrical can absorb the most power from wave by comparing the loading conditions of several buoys (e.g.cuboid, vertical cylindrical, horizontal cylindrical, sphere, and so on) using the Froude-Krylov theory. However, it is not argued the motion response of buoys with the same basal area and the different basal shapes. In this paper, buoys with the same basal area and the different basal shapes are investigated by the mean of simulation. There are two modes for the floating system, one is with mooring line and the other is without. In both cases, the motions in horizontal (x axis) and vertical (z axis) direction will be studied.


Author(s):  
Aldo Roberto Cruces Giron ◽  
William Steven Mendez Rodriguez ◽  
Fabrício Nogueira Correa ◽  
Breno P Jacob

Abstract This work presents an enhanced hybrid methodology for the analysis and design of floating production systems (FPS). The semi-coupled (S-C) procedure exploits advantages of coupled and uncoupled models, incorporated into a three-stage sequence of analyses that can be fully automated within a single analysis program, presenting striking reductions of computational costs. The procedure begins by determining, through a full nonlinear static coupled analysis, the mean equilibrium position of the FPS with its mooring lines and risers. Then, it automatically evaluates equivalent 6-DOF stiffness matrices and force vectors representing the whole array of lines. Finally, these matrices/vectors are transferred to the dynamic analysis, solving the global 6-DOF equations of motion restarted from the static equilibrium position. This way, the S-C methodology represents all non-linear effects associated to the lines and consider their influence on the dynamic behavior of the hull. However, in some situations it could still overestimate dynamic amplitudes of LF motions, and/or underestimate amplitudes of line tensions. Thus, to improve the overall accuracy, enhanced procedures are incorporated to better represent damping and inertial contribution of the lines. Results of case studies confirm that this methodology provides results adequate for preliminary or intermediary design stages.


Author(s):  
Arcandra Tahar ◽  
Djoni Sidarta

This paper is a continuation of a series of investigation for the dual stiffness approach for polyester mooring lines. Tahar et. al. (2012) has presented the global performance comparison between the dual stiffness method and the traditional method for the Spar platform. As shown in that study, there are appreciable differences between the former and the later methods especially in lateral motions, which, however, result in little difference in SCR strength response. Is it because the Spar has better motion characteristics than other wet tree floating platforms such as the semisubmersible and FPSO? This paper will investigate the effect of the dual stiffness method and the traditional method to SCR response for a Semisubmersible platform. The fully coupled dynamic analysis tool CHARM3D has been modified to incorporate the dual stiffness approach. Two axial stiffnesses (EA) of polyester line, post installation (static) stiffness and storm (dynamic) stiffness have been convoluted into a dual stiffness to represent the total response of the floating platform in a single run. In the traditional method, the analyses are done twice, one run for each stiffness. Then, the extremes from each run are used as governing values for design. The SCR will be modeled and analyzed using ABAQUS software.


Author(s):  
Zhiling Li ◽  
Carlos Llorente ◽  
Cheng-Yo Chen ◽  
Chang Ho Kang ◽  
Edmund Muehlner ◽  
...  

For the global performance analysis of a floater, the traditional semi-coupled method models mooring lines/risers as nonlinear massless springs and ignores 1) the inertial effects from mooring lines/risers, 2) the current and wave load effects on mooring lines/risers, and 3) the dynamic interaction between mooring lines/risers and the floater. However, these effects are deemed critical for deepwater and ultra deepwater floating structures as they may have a significant impact on the floaters’ motions and mooring line/riser tensions. This paper presents the development and verification of a time-domain nonlinear coupled analysis tool, MLTSIM-ROD, which is an integration of a recently developed 3D rod dynamic program, ROD3D, with the well-calibrated floater global performance analysis program, MULTISIM (Ref [9]). The ROD3D was developed based on a nonlinear finite element method and merged with MULTISIM by matching the forces and displacements of mooring lines/risers with the floater at their connections. MLTSIM-ROD can thus predict the floater’s large displacement/rotation motions and mooring line/riser tensions including all the coupled effects between the floater and mooring lines/risers. In this paper, global performance predictions for a SPAR in the Gulf of Mexico in deepwater were carried out using MLTSIM-ROD. The results were then verified with those from other coupled analysis programs. The paper also presents the results of motions and mooring line/riser tensions of the SPAR using both the coupled and semi-coupled methods. The results from the coupled and semi-coupled analyses indicate that the floater’s motions and mooring line/riser tensions could be significantly influenced by the dynamic interactions between the floater and mooring lines/risers. Hence, the coupled method needs to be considered for deepwater floating structures.


Author(s):  
Aldo Roberto Cruces Girón ◽  
Fabricio Nogueira Corrêa ◽  
Breno Pinheiro Jacob ◽  
Stael Ferreira Senra

Nowadays, coupled analysis tools that allow the simultaneous modelling of the hydrodynamic behaviour of the hull and the structural behaviour of the lines of floating production platforms have been increasingly used. The use of such tools is gradually allowing the introduction of some feedback between the design of risers and mooring systems. In the current practice, that comprises the so-called “hybrid” methodologies, mooring designers have been using these tools to consider the influence of the risers on the platform motions. On the other hand, riser designers can use motions that result from coupled simulations for the analysis of each riser. Such integration is already being implemented in the design practice of Petrobras; however, elsewhere the design of risers and mooring systems may still be performed separately, by different teams, therefore not fully exploiting the benefits that the coupled analysis tools can provide. In this context, this work describes an innovative, fully integrated methodology for the design of mooring systems and risers of floating production systems (FPS). This methodology considers different design stages (from preliminary to advanced), integrating the design activities of mooring lines and risers in a single spiral, allowing gains in efficiency and cost reduction. The initial design stages already include a feedback between riser and mooring analyses. The integrity of the risers can be considered in the mooring design by determining their safe operational zones, and therefore, mooring line pretensions can be modified to improve its structural performance. Then, in advanced stages critical design cases for both mooring and risers systems can be identified and rigorously verified by using fully coupled models. The application of the proposed methodology is illustrated with a case study of a typical FPS, representative of the platforms that have been recently considered for deepwater applications. It should be stressed that the methodology described here does not reflect the current design practice of Petrobras. Presently it is merely a proposal that is being studied and assessed; this work comprises the first draft of the methodology, which will be enhanced and consolidated as the result of current and future studies.


Author(s):  
D. L. Garrett ◽  
R. B. Gordon ◽  
J. F. Chappell

Viscous damping due to drag on mooring lines and risers is seastate dependent and significantly affects the motion of a floating platform in deep water, particularly in everyday seastates. This in turn impacts design of the risers, which are typically controlled by fatigue. The dynamic interaction between the platform, mooring and risers cannot be evaluated using conventional uncoupled analysis tools, where each is analyzed separately. Rather, coupled analysis is required to provide a consistent way to model the drag-induced damping from mooring lines and risers. We describe a coupled, frequency domain approach (RAMS – Rational Approach to Marine Systems) for calculating the dynamic response of vessel, mooring and risers. In coupled analysis, the risers and mooring lines are included in the model along with the floater. In this way, damping of the floater motion due to drag on the mooring lines and risers is incorporated directly. It is also valuable to estimate the linear damping factors from the full, coupled analysis results. These damping factors may then, for example, be used in an equivalent linear model of the floating system in which the stiffness and damping effects of the mooring and risers are represented as additions to the floater stiffness and damping matrices. Such a model could be used to efficiently design a subsystem (e.g.; an export riser). We describe a technique to determine the equivalent linear damping factors from the coupled analysis results. This paper also illustrates the use of these methods for a West Africa FPSO. The need for coupled analysis is shown by comparing results from the fully coupled model with those obtained using an uncoupled method in which the mooring line damping is approximated.


Author(s):  
Yuan Hongtao ◽  
Zeng Ji ◽  
Chen Gang ◽  
Mo Jian ◽  
Zhao Nan

This paper applies 3D potential theory and non-linear time domain coupled analysis method to analyze motion response of FPSO and dynamic response of mooring line of single mooring system. In addition, respectively to calculate mooring line tension of tension type and composite mooring line type and added buoy in mooring line. There the paper analyze different mooring lines to affect on the weight of single point mooring system of deepwater FPSO. Which expects to provide a theoretical basis for single point mooring system design and weight control.


Author(s):  
A. B. M. Saiful Islam ◽  
Mohammed Jameel ◽  
Suhail Ahmad ◽  
Mohd Zamin Jumaat

The oil and gas industry has moved towards the offshore deep water regions due to depletion of these resources in shallow and intermediate water depths. Conventional fixed jacket type platforms and bottom supported compliant platforms have been found to be inefficient and uneconomical for exploring these resources in deep water regions. In view of deep water conditions, Spar platforms have been seen to be the most economical and suitable alternative offshore platforms. Several operational Spar platforms such as SB-1, Shell’s ESSCO, Brent Spar, Oryx Neptune Spar, Chevron Genesis Spar and Exxon’s Diana Spar in the Gulf of Mexico and North Sea have shown the effectiveness and success of such platforms in deep-ocean. In deep water conditions, the severity of sea states has substantial effects on the spar platform. The mooring lines contribute significant inertia and damping because of their longer lengths, larger sizes, and heavier weights. Precise motion investigation of platforms should consider these actions in deep waters. However, proper dynamics cannot be assessed by the commonly used decoupled quasi-static method that ignores all or part of the interaction effects between the mooring lines and platform. Coupled analysis, which includes the platform and mooring lines in a single model, is the only way to capture the damping from mooring lines in a consistent manner. In the present study, coupled analysis of integrated Spar-mooring system has been performed. Cylindrical spar hull is treated as a rigid beam element and catenary mooring line as hybrid beam element. Nonlinear dynamic responses have been evaluated under several severe sea states of dissimilar wave heights and wave periods. Damping due to mooring lines has been assessed. An automatic Newmark-β time incremental approach has been implemented to conduct the analysis in time domain. Wave induced spar hull motion in surge, heave and pitch direction along with maximum tension in mooring line has been assessed for different wave conditions with and without current in 1018 m water depth. The time histories of spar responses follow substantial alteration for larger wave heights and wave periods. Maximum tensions in mooring line are very sensitive with momentous value for extreme sea loading. Mooring tension responses are significantly different reflecting the damping effect of mooring lines.


Author(s):  
K. Gurumurthy ◽  
Suhail Ahmad ◽  
A. S. Chitrapu

Reliability analysis of mooring lines requires an accurate prediction of extreme responses for large number of sea states even for a short-term based approach. In deep water, the interactions between the floater motions and the large number of risers and mooring lines become significant and must be considered for accurate prediction of floater motions as well as line dynamics. Time-domain coupled dynamic analysis procedures have been shown to give more accurate results but at a higher computational expense. Therefore, efficient computational tools are required for reliability analysis of mooring lines for deep water floating systems. Enhanced decoupled dynamic analysis method, in which the floater motions are computed by coupled analysis considering a coarse finite element model of the mooring line, is an efficient method and provides results comparable in accuracy with the fully coupled dynamic analysis procedures. This paper presents the application of enhanced de-coupled dynamic analysis method for reliability assessment of mooring lines for deep water floating systems. For reliability analysis of mooring lines, the methodology presented in Ding et al. [5] is adopted. Reliability analysis of a critically loaded mooring line for a deep water classical spar floater under extreme environmental loads is performed using environmental contour approach. Mooring line tension time histories under various storm conditions are calculated using enhanced de-coupled dynamic analysis. The uncertainty in the predicted maximum mooring line load due to different storm events, variability in met-ocean conditions and numerical models is considered. Probability of failure and the corresponding reliability index of the mooring line are calculated. The impact of variability in predicted mooring line load, line capacities and factors of safety on mooring line reliability are studied. It is seen that enhanced de-coupled dynamic analysis, which predicts the mooring line loads as accurately as coupled dynamic analysis with lesser CPU time, can be used more efficiently for reliability assessment of mooring lines for deep water floating systems.


Author(s):  
Mohammed Jameel ◽  
Suhail Ahmad ◽  
A. B. M. Saiful Islam ◽  
Mohd Zamin Jumaat

The oil and gas exploration has moved from shallow water to much deeper water far off the continental shelf. Spar platforms under deep water conditions are found to be the most economical and efficient type of offshore platform. Several Spar platforms installed in the Gulf of Mexico and North Sea proves its suitability for deep water exploration. Accurate prediction of motions of a Spar hull is very important for the integrity and associated costs of the riser/mooring line. The most common approach for solving the dynamics of Spar platform is to employ a decoupled quasi-static method, which ignores all or part of the interaction effects between the platform, mooring lines and risers. Coupled analysis, which includes the mooring lines, risers and platform in a single model, is the only way to capture the damping from mooring lines and risers in a consistent manner. The present coupling is capable in matching the forces, displacement, velocities and acceleration for mooring line with Spar hull at the fairlead position and riser with Spar hull at the riser keel connection. It can handle possible significant nonlinearities. The output from such analyses will be platform motions as well as a detailed mooring line and riser responses. In actual field problems hydrodynamic and aerodynamic loads act simultaneously on Spar platform, mooring lines and risers. In finite element model, the entire structure acts as a continuum. This model can handle all nonlinearities, loading and boundary conditions. The selected configuration of Spar platform is analysed under wave force together with wind loading and its structural response behaviour in steady state is studied. An automatic Newmark-β time incremental approach in ABAQUS/AQUA environment has been implemented to conduct the analysis in time domain. The wind force acting on the exposed part of the platform encompasses mean and fluctuating wind components. The frontal region includes the topside assembly and the spar hull portion above the sea level. High degree of nonlinearities makes the solutions convergence sensitive and it requires large number of iterations, at each time station. Spar responses in surge, heave and pitch along with top tension in moorings are computed. The coupled Spar experiences significant lateral shift along wave direction due to wind loading. Increase in standard deviation shows the participation of wind loading giving higher fluctuations. The CML tension increases for wind loading but the extent of the tension fluctuations under wind loading is not much due to high pretension of mooring line.


Sign in / Sign up

Export Citation Format

Share Document