Wellhead Fatigue Analysis Method: Benefits of a Structural Reliability Analysis Approach

Author(s):  
Torfinn Hørte ◽  
Lorents Reinås ◽  
Jan Mathisen

Structural Reliability Analysis (SRA) methods have been applied to marine and offshore structures for decades. SRA has proven useful in life extension exercises and inspection planning of existing offshore structures. It is also a useful tool in code development, where the reliability level provided by the code is calibrated to a target failure probability obtained by SRA. This applies both to extreme load situations and also to a structural system under the influence of a time dependent degradation process such as fatigue. The current analysis methods suggested for service life estimation of subsea wells are deterministic, and these analyses are associated with high sensitivity to variations in input parameters. Thus sensitivity screening is often recommended for certain input parameters, and the worst case is then typically used as a basis for the analysis. The associated level of conservatism embedded in results from a deterministic analysis is not quantified, and it is therefore difficult to know and to justify if unnecessary conservatism can be removed from the calculations. By applying SRA to a wellhead fatigue analysis, the input parameters are accounted for with their associated uncertainty given by probability distributions. Analysis results can be generated by use of Monte-Carlo simulations or FORM/SORM (first/second order reliability methods), accounting for the full scatter of system relations and input variations. The level of conservatism can then be quantified and evaluated versus an acceptable probability of failure. This article presents results from a SRA of a fictitious but still realistic well model, including the main assumptions that were made, and discusses how SRA can be applied to a wellhead fatigue analysis. Global load analyses and local stress calculations were carried out prior to the SRA, and a response surface technique was used to interpolate on these results. This analysis has been limited to two hotspots located in each of the two main load bearing members of the wellhead system. The SRA provides a probability of failure estimate that may be used to give better decision support in the event of life extension of existing subsea wells. In addition, a relative uncertainty ranking of input variables provides insight into the problem and knowledge about where risk reducing efforts should be made to reduce the uncertainty. It should be noted that most attention has been given to the method development, and that more comprehensive analysis work and assessment of specific input is needed in a real case.

Author(s):  
Torfinn Hørte ◽  
Massimiliano Russo ◽  
Michael Macke ◽  
Lorents Reinås

Structural Reliability Analysis (SRA) methods have been applied to marine and offshore structures for decades. SRA has proven useful in life extension exercises and inspection planning of existing offshore structures. It is also a useful tool in code development, where the reliability level provided by the code is calculated by SRA and calibrated to a target failure probability. The current analysis methods for wellhead fatigue are associated with high sensitivity to variations in some input parameters. Some of these input parameters are difficult to assess, and sensitivity screening is often needed and the worst case is then typically used as a basis for the analysis. The degree of conservatism becomes difficult to quantify, and it is therefore equally difficult to find justification to avoid worst case assumptions. By applying SRA to the problem of wellhead fatigue, the input parameters are accounted for with their associated uncertainty given by probability distributions. In performing SRA all uncertainties are considered simultaneously, and the probability of fatigue failure is estimated and the conservatism is thereby quantified. In addition SRA also provides so-called uncertainty importance factors. These represent a relative quantification of which input parameter uncertainties contribute the most to the overall failure probability, and may serve well as guidance on where possible effort to reduce the uncertainty preferably should be made. For instance, instrumentation may be used to measure the actual structural response and thus eliminate the uncertainty that is associated with response calculations. Clearly measurements obtained from an instrumented system will have its own uncertainty. Other options could be to perform specific fatigue capacity testing or pay increased attention to logging of critical operational parameters such as the cement level in the annulus between the conductor and surface casing. This article deals with the use of measurements for fatigue life estimation. Continuous measurements of the BOP motion during the drilling operations have been obtained for a subsea well in the North Sea. These measurements are used both in conventional (deterministic) analysis and in SRA (probabilistic analysis) for fatigue in the wellhead system. From the deterministic analysis improved fatigue life results are obtained if the measured response replaces the response obtained by analysis. Furthermore, SRA is used to evaluate the appropriate magnitude of the design fatigue factor when fatigue analysis is based on measured response. It is believed that the benefit from measurements and SRA serve as an improved input to the decision making process in the event of life extension of existing subsea wells.


2004 ◽  
Vol 126 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Daniel Straub ◽  
Michael Havbro Faber

Reliability and risk-based inspection planning (RBI) has been developed in the past for single structural details subject to fatigue, based on structural reliability analysis. This paper extends the methodology to systems with a stochastic dependency between the individual fatigue hot spots. It addresses the general decision theoretic problems that arise when dealing with RBI of systems. The differences to inspection planning for individual hot spots are listed and discussed. Using a generic format for single hot spots, a consistent approach to the problem is proposed, based on the concept of Value of Information. Possible applications of the methodology are outlined.


Author(s):  
Hugo A. Ernst ◽  
Ricardo Schifini ◽  
Richard E. Bravo ◽  
Diego N. Passarella ◽  
Federico Daguerre ◽  
...  

Structural integrity analyses are used to guarantee the reliability of critical engineering components under certain conditions of interest. In general, the involved parameters have statistical distributions. Choosing a single set of values for the parameters of interest does not show the real statistical distribution of the output parameters. In particular, offshore pipes installation by reeling is a matter of concern due to the severe conditions of the process. Since it is necessary to guarantee the integrity of the pipes, a probabilistic fracture mechanics reliability analysis seems to be the most adequate approach. In this work, a probabilistic fracture mechanics assessment approach to perform the structural reliability analysis of tubes subjected to a reeling process was developed. This procedure takes into account the statistical distributions of the material properties and pipe geometry, using a fracture mechanics approach and the Monte Carlo method. Two-parameter Weibull distributions were used to model the variability of the input parameters. The assessment procedure was implemented as a self-contained executable program. The program outputs are: the statistical distribution of critical crack size, amount of crack extension, final crack size and the cumulative probability of failure for a given crack size. A particular case of interest was studied; a seamless tube - OD 323.9 × wt 14.3 mm, was analyzed. Tolerable defect size limits (defect depth vs. defect length curves) for different probability of failure levels were obtained. A sensitivity analysis was performed; the effect of material fracture toughness and misalignment was studied.


Author(s):  
Daniel Straub ◽  
Michael Havbro Faber

Reliability and risk based inspection planning (RBI) has been developed in the past for single details subject to fatigue based on structural reliability analysis. This paper extends the methodology to systems with a stochastic dependency between the individual hot spots. It addresses the general decision theoretic problems that arise when dealing with RBI of systems. The differences to inspection planning for individual hot spots are listed and discussed. Using a generic format for single hot spots, a consistent approach to the problem is proposed, based on the concept of Value of Information. Possible application of the methodology is outlined.


Author(s):  
Andrew Francis ◽  
Mike Gardiner ◽  
Marcus McCallum

Pipeline designers and operators recognize that the commercial viability of operating high-pressure gas pipelines decreases with time. This is because the structural integrity levels of the pipeline decrease, due to the action of deterioration processes such as corrosion and fatigue, until the level of mitigation required to ensure adequate safety levels becomes uneconomical. For this reason pipelines are assigned a nominal design life of typically 40 years. This paper describes the application of structural reliability analysis to a high-pressure natural gas pipeline having both onshore and offshore sections, in order to determine the extent to which the asset life could be increased beyond the design life without any significant reduction in reliability and hence safety levels. The approach adopted was to identify the credible failure modes that could affect each of the onshore and offshore sections and determine the probability of failure due to each failure mode taking account of the uncertainties in the parameters that affect each mode. Based on a detailed consideration of the results of the study it was concluded that the life of the asset considered here could be extended to 60 years without any significant reduction in safety levels. Moreover, it was concluded that if certain mitigating measures were to be implemented in the future then it would be possible to increase the asset life to significantly more than 60 years.


Author(s):  
David Buchmiller ◽  
Arve Bjørset ◽  
Torfinn Hørte ◽  
Sune Pettersen

Casing collapse capacity was identified by Statoil as a critical operational parameter on one of its fields in production. This facilitated the need to re-evaluate the overall well design, specifically the production casing’s collapse capacity. Studies were performed to analyze and objectively increase the documented casing collapse capacity, while maintaining the safety level. Initially, the casing collapse capacity was evaluated using API TR 5C3 / ISO 10400, with insufficient capacity being documented. In order to investigate further, physical material testing and collapse testing were performed. Detailed finite element analysis was used to evaluate the casing collapse capacity, given well specific input parameters. The four critical parameters of axial load, casing ovality, casing wear, and temperature-dependent material properties were identified and the importance of each parameter was mapped. Using the testing results and the finite element models as a basis, structural reliability analysis (SRA) was applied to calculate the probability of failure for casing collapse of the production casing as a function of the differential pressure. The SRA provided results for the spread of the field and for individual wells given specific input on the key parameters of casing ovality, wear and temperature. At the selected target reliability level, the SRA results showed a higher collapse capacity of the production casing relative to conservative calculations commonly used from API TR 5C3 / ISO 10400 for well design. Applying SRA to well design, specifically collapse evaluations, has proven useful in concluding on the probability of failure. The SRA has transformed improved knowledge from testing and measurements to reduced uncertainty and a corresponding reduction in the failure probability. The potential over-conservatism in the conventional deterministic analysis is then avoided, while maintaining the overall safety level. The SRA results were used to assist in the risk evaluation resulting in an allowance for continued production on existing wells.


Sign in / Sign up

Export Citation Format

Share Document