Numerical Analysis of Hydrodynamic Performance of Backward Bent Duct Buoy (BBDB)

Author(s):  
W. C. Koo ◽  
S. J. Kim ◽  
M. H. Kim

The hydrodynamic performance of Backward Bent Duct Buoy (BBDB), a floating-type wave energy converter, was evaluated in the time-domain simulation by using a two-dimensional fully-nonlinear numerical wave tank (NWT) technique. The developed NWT was based on potential theory, boundary element method with constant panels, and the mixed Eulerian-Lagrangian (MEL) approach to capture the nonlinear free-surfaces. The viscous damping at the chamber entrance due to oscillating water column and the shape of body causing generation of vortex shedding were modeled and applied to the free surface boundary condition inside the chamber. The calculated surface elevations inside the chamber with open chamber condition were compared with experimental data to select a proper viscous damping coefficient. Then, the surface elevations with a tuned viscous damping coefficient were calculated for various wave conditions. The results of linear and nonlinear time-domain simulation with two different corner-shaped BBDBs were compared to investigate the mean drift force of BBDB. Energy conservation in the computational domain was checked for all cases.

Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4083
Author(s):  
Kong ◽  
Liu ◽  
Su ◽  
Ao ◽  
Chen ◽  
...  

In this work the hydrodynamic performance of a novel wave energy converter configuration was analytically and numerically studied by combining a moonpool and a wave energy buoy, called the moonpool platform–wave energy buoy (MP–WEB). A potential flow, semi-analytical approach was adopted to assess the total (incident, diffraction, radiation) wave forces acting on the device, and the wave capture and energy efficiency performance of this configuration was assessed, both in the time and frequency domain. The performance of the two configurations, single float and double float, were analyzed and compared in terms of diffraction force, added mass radiation force, motion, and power in the frequency domain. Using an impulse response function-based (IRF) method, the frequency domain results were converted in the time domain. The same parameters in the time domain were derived and the main results were confirmed. Wave energy conversion efficiency was significantly increased due to the resonance phenomenon inside the moonpool.


Author(s):  
Abel Medellin ◽  
Michelle Arango-Turner ◽  
Curtis Fuhr

Spars are towed to installation site horizontally and upended by progressive flooding of tanks. It is common practice to perform a dynamic time domain simulation for a self upending classic spar to determine hydrostatic pressures on compartments. There are many different flooding scenarios that create challenges in modeling and simulation during the design phase. In one particular scenario, the spar upending is initiated by opening valves that allow water to flood into the skirt tank. The skirt tank will progressively fill, based on the differential hydrostatic pressure at valves, and cause the spar to upend. Flooding into keel tanks will commence once respective openings become submerged. Several openings from the skirt tank into the keel tanks reduce the differential pressure experienced in the keel tanks during upending. Simulation of the transfer of water between tanks cannot be modeled with ease using the standard tank flooding options available within the software suite. This particular compartment flooding problem is solved by utilizing a scheme in which the time domain simulation was performed iteratively for a specified time interval. For every iteration the amount of water transferred between the skirt and keel tanks are calculated. The amount of water transferred is calculated using a custom modeling technique. The openings from the skirt tank into the keel tanks are not modeled as a typical hole or valve into a compartment, but the location of these holes are modeled. The amount of water flowing through these openings is determined by the water level in the skirt tank, friction through the opening, and pressure inside the keel tanks. This paper will describe in detail the scheme developed, the tank modeling requirements, and the results obtained.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2759 ◽  
Author(s):  
Wojciech Uchman ◽  
Janusz Kotowicz ◽  
Leszek Remiorz

In this article, an investigation of a free-piston Stirling engine-based micro-cogeneration (μCHP) unit is presented. This work is a step towards making the system calculations more reliable, based on a data-driven model, which enables the time-domain simulation of the μCHP behavior. A laboratory setup was developed that allowed for the measurement of a micro-cogeneration unit during long-term operation with a variable thermal load. The maximum efficiency of electricity generation was equal to 13.2% and the highest overall efficiency was equal to 95.7%. A model of the analyzed μCHP system was developed and validated. The simulation model was based on the device’s characteristics that were obtained from the measurements; it enables time-domain calculations, taking into account the different operating modes of the device. The validation of the system showed satisfactory compliance of the model with the measurements: for the period modeled of 24 h, the error in the heat generation fluctuated in the range 0.31–4.50%, the error in the electricity generation was in the range 2.48–4.70%, the error in the natural gas consumption was in the range 0.26–4.59%, and the engine’s runtime error was in the range 0.14–8.58%. The modelling process is easily applicable to other energy systems for detailed analysis.


Author(s):  
S. J. Lee ◽  
M. H. Kim

The coupling and interactions between ship motion and inner-tank sloshing are investigated by a potential-viscous hybrid method in the time domain. For the time-domain simulation of vessel motion, the hydrodynamic coefficients and wave forces are obtained by a potential-theory-based 3D diffraction/radiation panel program in the frequency domain. Then, the corresponding simulations of motions in the time domain are carried out using the convolution-integral method. The liquid sloshing in a tank is simulated in the time domain by a Navier–Stokes solver. A finite difference method with SURF scheme assuming the single-valued free-surface profile is applied for the direct simulation of liquid sloshing. The computed sloshing forces and moments are then applied as external excitations to the ship motion. The calculated ship motion is in turn inputted as the excitation for liquid sloshing, which is repeated for the ensuing time steps. For comparison, we independently developed a 3D panel program for linear inner-fluid motions, and it is coupled with the vessel-motion program in the frequency domain. The developed computer programs are applied to a barge-type floating production storage and offloading (FPSO) hull equipped with two partially filled tanks. The time-domain simulation results show reasonably good agreement when compared with Maritime Research Institute Netherlands (MARIN’s) experimental results. The frequency-domain results qualitatively reproduce the trend of coupling effects, but the peaks are in general overpredicted. It is seen that the coupling effects on roll motions appreciably change with filling level. The most pronounced coupling effects on roll motions are the shift or split of peak frequencies. The pitch motions are much less influenced by the inner-fluid motion compared with roll motions.


Author(s):  
Wei Qiu ◽  
Hongxuan Peng

Based on the panel-free method, large-amplitude motions of floating offshore structures have been computed by solving the body-exact problem in the time domain using the exact geometry. The body boundary condition is imposed on the instantaneous wetted surface exactly at each time step. The free surface boundary is assumed linear so that the time-domain Green function can be applied. The instantaneous wetted surface is obtained by trimming the entire NURBS surfaces of a floating structure. At each time step, Gaussian points are automatically distributed on the instantaneous wetted surface. The velocity potentials and velocities are computed accurately on the body surface by solving the desingularized integral equations. Nonlinear Froude-Krylov forces are computed on the instantaneous wetted surface under the incident wave profile. Validation studies have been carried out for a Floating Production Storage and Offloading (FPSO) vessel. Computed results were compared with experimental results and solutions by the panel method.


Author(s):  
Z. Charlie Zheng ◽  
Guoyi Ke

Conventional time-domain schemes have limited capability in modeling long-range acoustic propagation because of the vast computer resources needed to cover the entire region of interest with a computational domain. Many of the long-range acoustic propagation problems need to consider propagation distances of hundreds or thousands of meters. It is thus very difficult to maintain adequate grid resolution for such a large computational domain, even with the state-of-the-art capacity in computer memory and computing speed. In order to overcome this barrier, a moving zonal-domain approach is developed. This concept uses a moving computational domain that follows an acoustic wave. The size and interval of motion of the domain are problem dependent. In this paper, an Euler-type moving domain in a stationary coordinate frame is first tested. Size effects and boundary conditions for the moving domain are considered. The results are compared and verified with both analytical solutions and results from the non-zonal domain. Issues of using the moving zonal-domain with perfectly-matched layers for the free-space boundary are also discussed.


Author(s):  
M. D. Yang ◽  
B. Teng

A time-domain simulation method is developed for the coupled dynamic analysis of a spar platform with mooring lines. For the hydrodynamic loads, a time domain second order method is developed. In this approach, Taylor series expansions are applied to the body surface boundary condition and the free surface boundary condition, and Stokes perturbation procedure is then used to establish corresponding boundary value problems with time-independent boundaries. A higher order boundary element method is developed to calculate the velocity potential of the resulting flow field at each time step. The free-surface boundary condition is satisfied to the second order by 4th order Adams-Bashforth-Moultn method. An artificial damping layer is adopted on the free surface to avoid the wave reflection. For the mooring-line dynamics, a geometrically nonlinear finite element method using isoparametric cable element based on the total Lagrangian formulation is developed. In the coupled dynamic analysis, the motion equation for the hull and dynamic equations for mooring lines are solved simultaneously using Newmark method. Numerical results including motions and tensions in the mooring lines are presented.


Sign in / Sign up

Export Citation Format

Share Document