Finite Element Modeling of Transient Temperature and Residual Stress Distribution Analysis in Multi-Pass Welding Process

Author(s):  
Guang-Ming Fu ◽  
Chen An ◽  
Marcelo Igor Lourenço ◽  
Meng-Lan Duan ◽  
Segen F. Estefen

The residual stress and deformation due to the welding process have significant influences on the service performance of the welded deepwater platform hull. An exact prediction of transient temperature distribution is the important prerequisite to ensure the simulation accuracy of the welding residual stress and deformation fields, especially in the multi-pass welding process. Although the transient temperature distribution and residual stress distribution was studied in the past by various authors, the literature on 3D finite element (FE) simulation of multi-pass welding process is limited. In this paper, a FE model is developed to analyze the transient temperature and residual stress distribution of AH36 steel sheets in multi-pass welding process. A moving heat source model based on Goldak’s double-ellipsoidal heat flux distribution is employed for the heated plates. The addition of the volumetric heat source into the FE model and its movement along the welding pass are realized through a dedicated FORTRAN subroutine. The element birth and death technique in Abaqus/Standard is employed to simulate the weld filler variation with time in welded joints. The transient temperature calculated in the first stage is utilized as the input to the residual stress and distortion due to thermal shrinkage during the welding process and subsequent cooling. The results show good agreements between the temperature distribution and the geometry of weld pool obtained in the present work and those previously reported. Finally, a parametric study is performed to investigate the effect of welding variables, such as geometric parameters of Goldak’s heat source model, welding speed, pre-heat temperature and power input in the multi-pass welds, on the residual stress and distortion of the steel sheets.

Author(s):  
Mu Qin ◽  
Guangxu Cheng ◽  
Zaoxiao Zhang ◽  
Qing Li ◽  
Jianxiao Zhang

The 2.25Cr-1Mo-0.25V steels are widely used in the petroleum chemical industry for the manufacturing of pressure vessels. The multi-pass welding is a critical type of fabrication in hydrogenation reactor. However, very complicated residual stresses could be generated during the multi-pass welding process. The presence of residual stresses could have significant influence on the performance of welded product. In the present work, the transient temperature distribution and residual stress distribution in welding of 2.25Cr-1Mo-0.25V steel are analyzed by using numerical method. An uncoupled thermal-mechanical two-dimensional (2-D) FEM is proposed under the ABAQUS environment. The transient temperature distribution and the residual stress distribution during the welding processes are determined through the finite element method. A group of experiments by using the blind-hole method have been conducted to validate the numerical results. The results of 2-D model agree well with the experiment. The result shows that the maximum welding stress generated at heat affected zone (HAZ) both at the top and bottom surface whether to transverse stress or longitudinal stress.


2011 ◽  
Vol 328-330 ◽  
pp. 492-496 ◽  
Author(s):  
Khurram Asifa ◽  
Hong Li ◽  
Li Li ◽  
Shehzad Khurram

This paper presents FE simulation of Arc welding process using nonlinear transient thermal analysis to study the effect of process parameters on temperature distributions in T-joint fillet welds. An APDL (ANSYS Parametric Design Language) program is developed to define moving surface heat source model with Gaussian distribution into simulations by using commercially available FE code ANSYS. The transient temperature distribution in fillet weld during welding process are predicted and subsequently validated with published experimental results. Influence of heat energy input, electrode angle, welding speed and plate thickness on temperature distribution was further explored. The present work provides a basis for prediction of welding residual stresses and distortions in fillet joints.


Author(s):  
Itaru Muroya ◽  
Youichi Iwamoto ◽  
Naoki Ogawa ◽  
Kiminobu Hojo ◽  
Kazuo Ogawa

In recent years, the occurrence of primary water stress corrosion cracking (PWSCC) in Alloy 600 weld regions of PWR plants has increased. In order to evaluate the crack propagation of PWSCC, it is required to estimate stress distribution including residual stress and operational stress through the wall thickness of the Alloy 600 weld region. In a national project in Japan for the purpose of establishing residual stress evaluation method, two test models were produced based on a reactor vessel outlet nozzle of Japanese PWR plants. One (Test model A) was produced using the same welding process applied in Japanese PWR plants in order to measure residual stress distribution of the Alloy 132 weld region. The other (Test model B) was produced using the same fabrication process in Japanese PWR plants in order to measure stress distribution change of the Alloy 132 weld region during fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end. For Test model A, residual stress distribution was obtained using FE analysis, and was compared with the measured stress distribution. By comparing results, it was confirmed that the FE analysis result was in good agreement with the measurement result. For mock up test model B, the stress distribution of selected fabrication processes were measured using the Deep Hole Drilling (DHD) method. From these measurement results, it was found that the stress distribution in thickness direction at the center of the Alloy 132 weld line was changed largely during welding process of the safe end to the main coolant pipe.


2020 ◽  
Vol 64 (04) ◽  
pp. 384-391
Author(s):  
Tetyana Gurova ◽  
Segen F. Estefen ◽  
Anatoli Leontiev ◽  
Plinio T. Barbosa ◽  
Valentin Zhukov ◽  
...  

Repair by welding is widely used in the shipbuilding industry during ship construction. The effect of the residual stress distribution induced by the welding process on the ship structure is important for the repair effectiveness. This article presents an experimental study of the residual stress distribution induced by repair welding in the plates that are typically used in ships and offshore structures. Different repair techniques are evaluated to identify the best practice associated with residual stress values. Recommendations for repair welding are discussed, and modifications to the present practice are proposed.


2012 ◽  
Vol 155-156 ◽  
pp. 1218-1222
Author(s):  
Lei Wang ◽  
Mitsuyosi Tsunori

Residual stress distribution plays a very important role in welded structures, the aim of present work is to find out the effect of different welding methods on the residual stress distribution by means of neutron diffraction measurements and FE models simulation. 4 mm thick DH-36 steel plates were butt welded by MIG welding process and 5 mm thick AA 2024 aluminium alloy plates were butt welded by friction stir welding process. Results show that residual stresses of MIG welding process are higher than those of friction stir welding process. The peak residual stress of MIG weld is close to the room temperature uniaxial yield strength of DH-36 while the peak residual stress of friction stir weld is just about 50% of the room temperature uniaxial yield strength of AA2024. The size effect of MIG welded and effect of welding speeds of friction stir welded on the residual stress distribution have also been studied in the paper.


Author(s):  
Bai-Qiao Chen ◽  
C. Guedes Soares

This work investigates the temperature distribution, deformation and residual stress in steel plates as a result of different sequences of welding. The single-pass gas tungsten arc welding process is simulated by a three dimensional nonlinear thermo-elasto-plastic approach. It is observed that the distribution of residual stress varies through the direction of plate thickness. It is concluded that the welding sequence affects not only the welding deformation but also the residual stress mainly in the lower layer of the plates. An in-depth discussion on the pattern of residual stress distribution is presented, especially on the width of the tension zone. Smaller residual tension zone and slightly lower compressive stress are found in thicker plate.


2015 ◽  
Vol 31 (04) ◽  
pp. 220-229
Author(s):  
Debabrata Podder ◽  
Sara Kenno ◽  
Sreekanta Das ◽  
Nisith Ranjan Mandal

Interruptions in the welding process in shipbuilding are unavoidable because of complex geometry and human fatigue. This article presents an uncoupled three dimensional finite element (FE) modeling technique for bead-on-plate welding and an interruption in the welding process for low carbon and high notch toughness steel plate typically used in shipbuilding. The goal of the FE model was to successfully predict the effect of various time delays in the welding interruption on the residual stress distributions. The FE results are compared with the experimental results for the validation of the model. The experimental work was completed using the neutron diffraction method. The element birth-and-death algorithm was used in ANSYSW to simulate the filler metal deposition. A double ellipsoid heat source was used to simulate the heat source of the weld pool. The FE model considers the temperature dependent nonlinear material properties and uses the temperature-dependent combined coefficient of heat loss. The study found that weld interruptions in the welding process change the residual stress patterns and cause an increase in the maximum longitudinal tensile residual stresses. However, the maximum longitudinal compressive stress reduces as a result of interruptions in the weld process. This study found that a weld interruption duration of approximately 2 minutes is optimum for both fatigue and buckling strength. This study also analyzed the effect of preheat on longitudinal residual stress distribution and concluded that a suitable short time lag without any preheat is equivalent to preheat after a long welding interval.


Author(s):  
Shahriar Jahanian

A numerical method is presented for evaluating the residual stress distribution in a long aluminum solid cylinder subjected to rapid cooling. An analytical model is developed for the temperature distribution. For the boundary conditions, experimental data for the outer surface of the cylinder are used, and a reasonable agreement between the predicted temperature distribution at the center of the cylinder and the experimental data is observed. For the numerical analysis, a quasi-static, uncoupled thermoelastoplastic analysis, based on a hyperbolic sine law, is presented. The numerical results are presented for the temperature distribution as well as the thermoelastoplastic stress distribution in a solid cylinder with temperature-dependent properties. The residual stress distribution is compared with the results of other investigators who used the Finite Element Method, and a reasonable agreement between our results and previous results is observed. The conclusion is reached that the temperature dependency of the yield stresses and the problem of post-yielding are two important factors to be considered when developing a model for predicting the residual stresses in quenched bodies.


Sign in / Sign up

Export Citation Format

Share Document