On the Axial-Flexural-Torsional Coupling of Underwater Slender Cylinders

Author(s):  
Waldir T. Pinto ◽  
Carlos A. Levi

This paper presents a numerical model for the simulation of the axial-flexural-torsional coupling of undewater cylindrical structures. Cylindrical structures are largely utilized in the marine environment in a wide range of applications as in risers, marine cables, flexible pipes, mooring systems and so on. They may exhibit complex axial-flexural-torsional coupling, which makes the structural analysis highly nonlinear. In addition, the fluid-structure interaction may include flow induced vibrations, frequency lock-in and internal flow effects. The proposed three-dimensional model assumes that the structure aspect ratio is very high, its cross section is circular, the cable is elastic and may experience large displacements and large strains, as long as the elastic regime holds. The steady state load on the cylinder consists of the self-weight and buoyancy, drag and lift forces, in addition to a distributed residual twist along the cylinder. The drag and lift forces are evaluated by Morison type formulation. The governing differential equations are derived from first principles, assuming Newtonian mechanics. Then, they are solved numerically by a finite element formulation based on nonlinear space frame elements. The resulting set of algebraic equations is solved by a minimization technique that uses the Newton-Raphson algorithm. Results show the ability of the model to predict the static configuration of equilibrium of the cylinder and to capture the coupling between axial, flexural and torsional responses of the cylinder.

Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.


2022 ◽  
Vol 12 (2) ◽  
pp. 890
Author(s):  
Paweł Dra̧g

An optimization task with nonlinear differential-algebraic equations (DAEs) was approached. In special cases in heat and mass transfer engineering, a classical direct shooting approach cannot provide a solution of the DAE system, even in a relatively small range. Moreover, available computational procedures for numerical optimization, as well as differential- algebraic systems solvers are characterized by their limitations, such as the problem scale, for which the algorithms can work efficiently, and requirements for appropriate initial conditions. Therefore, an αDAE model optimization algorithm based on an α-model parametrization approach was designed and implemented. The main steps of the proposed methodology are: (1) task discretization by a multiple-shooting approach, (2) the design of an α-parametrized system of the differential-algebraic model, and (3) the numerical optimization of the α-parametrized system. The computations can be performed by a chosen iterative optimization algorithm, which can cooperate with an outer numerical procedure for solving DAE systems. The implemented algorithm was applied to solve a counter-flow exchanger design task, which was modeled by the highly nonlinear differential-algebraic equations. Finally, the new approach enabled the numerical simulations for the higher values of parameters denoting the rate of changes in the state variables of the system. The new approach can carry out accurate simulation tests for systems operating in a wide range of configurations and created from new materials.


2007 ◽  
Vol 571 ◽  
pp. 439-454 ◽  
Author(s):  
ERNST A. VAN NIEROP ◽  
STEFAN LUTHER ◽  
JOHANNA J. BLUEMINK ◽  
JACQUES MAGNAUDET ◽  
ANDREA PROSPERETTI ◽  
...  

The motion of small air bubbles in a horizontal solid-body rotating flow is investigated experimentally. Bubbles with a typical radius of 1 mm are released in a liquid-filled horizontally rotating cylinder. We measure the transient motion of the bubbles in solid-body rotation and their final equilibrium position from which we compute drag and lift coefficients for a wide range of dimensionless shear rates 0.1<Sr<2 (Sr is the velocity difference over one bubble diameter divided by the slip velocity of the bubble) and Reynolds numbers 0.01<Re<500 (Re is based on the slip velocity and bubble diameter). For large Sr, we find that the drag force is increased by the shear rate. The lift force shows strong dependence on viscous effects. In particular, for Re<5, we measure negative lift forces, in line with theoretical predictions.


Author(s):  
Michael D. T. McDonnell ◽  
Daniel Arnaldo ◽  
Etienne Pelletier ◽  
James A. Grant-Jacob ◽  
Matthew Praeger ◽  
...  

AbstractInteractions between light and matter during short-pulse laser materials processing are highly nonlinear, and hence acutely sensitive to laser parameters such as the pulse energy, repetition rate, and number of pulses used. Due to this complexity, simulation approaches based on calculation of the underlying physical principles can often only provide a qualitative understanding of the inter-relationships between these parameters. An alternative approach such as parameter optimisation, often requires a systematic and hence time-consuming experimental exploration over the available parameter space. Here, we apply neural networks for parameter optimisation and for predictive visualisation of expected outcomes in laser surface texturing with blind vias for tribology control applications. Critically, this method greatly reduces the amount of experimental laser machining data that is needed and associated development time, without negatively impacting accuracy or performance. The techniques presented here could be applied in a wide range of fields and have the potential to significantly reduce the time, and the costs associated with laser process optimisation.


MRS Bulletin ◽  
2003 ◽  
Vol 28 (6) ◽  
pp. 424-427 ◽  
Author(s):  
Agnès Aymonier ◽  
Eric Papon

AbstractSoft reactive adhesives (SRAs) are polymer-based materials (e.g., polyurethanes, polysiloxanes, polydienes) designed to be further vulcanized or slightly cross-linked through external activation (heat, moisture, oxygen, UV–visible irradiation, etc.), either at the time of their application or within a subsequent predefined period. They are used mainly as mastics, or sealing compounds, in a wide range of industrial and commercial fields such as construction, footwear, and the automotive industry. Generally deposited as thick films, SRAs behave as structural adhesives; their low elastic moduli accommodate large strains between the bonded parts without incurring permanent damage. Other outstanding attributes of SRAs are their resistance to solvents, their ability to withstand aggressive environments, and their ease of use. This article discusses examples of SRAs and, more specifically, shows how the cross-linking chemistry, mainly through step-growth polymerization, provides their primary advantages.


Author(s):  
M. R. Meigounpoory ◽  
A. Rahi ◽  
A. Mirbozorgi

The drag and lift forces acting on a rotating impenetrable spherical suspended nano-particle in a homogeneous uniform flow are numerically studied by means of a three-dimensional numerical simulation with slip boundary condition. The effects of both the slip coefficient and rotational speed of the nanosphere on the drag and lift forces are investigated for Reynolds numbers in the range of 0.1 < Re < 100. Increase of rotation increases the drag and lift force exerted by flow at the surface of nano-sphere. By increasing slip coefficient the values of drag and lift coefficients decreases. At full slip condition, rotation of the nano-sphere has not significant effects on the drag and lift coefficient values moreover the lift coefficient of flow around the rotating spherical particle will be vanished. Present numerical results at no-slip condition are in good agreements with certain results of flow around of rotating sphere.


2018 ◽  
Vol 27 (4) ◽  
pp. 474-488 ◽  
Author(s):  
A. A. Gavrilov ◽  
K. A. Finnikov ◽  
Ya. S. Ignatenko ◽  
O. B. Bocharov ◽  
R. May

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Maja B. Rosić ◽  
Mirjana I. Simić ◽  
Predrag V. Pejović

This paper considers a passive target localization problem in Wireless Sensor Networks (WSNs) using the noisy time of arrival (TOA) measurements, obtained from multiple receivers and a single transmitter. The objective function is formulated as a maximum likelihood (ML) estimation problem under the Gaussian noise assumption. Consequently, the objective function of the ML estimator is a highly nonlinear and nonconvex function, where conventional optimization methods are not suitable for this type of problem. Hence, an improved algorithm based on the hybridization of an adaptive differential evolution (ADE) and Nelder-Mead (NM) algorithms, named HADENM, is proposed to find the estimated position of a passive target. In this paper, the control parameters of the ADE algorithm are adaptively updated during the evolution process. In addition, an adaptive adjustment parameter is designed to provide a balance between the global exploration and the local exploitation abilities. Furthermore, the exploitation is strengthened using the NM method by improving the accuracy of the best solution obtained from the ADE algorithm. Statistical analysis has been conducted, to evaluate the benefits of the proposed modifications on the optimization performance of the HADENM algorithm. The comparison results between HADENM algorithm and its versions indicate that the modifications proposed in this paper can improve the overall optimization performance. Furthermore, the simulation shows that the proposed HADENM algorithm can attain the Cramer-Rao lower bound (CRLB) and outperforms the constrained weighted least squares (CWLS) and differential evolution (DE) algorithms. The obtained results demonstrate the high accuracy and robustness of the proposed algorithm for solving the passive target localization problem for a wide range of measurement noise levels.


Sign in / Sign up

Export Citation Format

Share Document