Safety Factors Calibration for Wall Thickness Design of Ultra Deepwater Pipelines

Author(s):  
Eduardo Oazen ◽  
Bruno R. Antunes ◽  
Carlos O. Cardoso ◽  
Rafael F. Solano

Wall thickness often presents a considerable influence in offshore pipeline capital expenditure (CAPEX). This influence is enhanced in design of ultra deepwater trunk lines of large diameter, where any wall thickness increase provides a huge impact on project costs. In ultra deepwater scenarios, thicker pipelines may eventually implicate not only in higher costs, but may also compromise the project feasibility due to installation load constraints related to laying vessels availability. One potential way to reduce the pipeline wall thickness is to calibrate fitness-for-purpose safety factors through application of structural reliability methods, instead of utilizing the standardized safety factors presented in international codes. Since mid-nineties, several offshore pipeline design codes have been allowing the calibration of safety factors by structural reliability analysis. The purpose of such an allowance is that structural reliability methods would eliminate some eventual conservatism presented in the safety factors proposed by codes. Although this enables the achievement of optimized safety factors, more than fifteen years have passed and only few pipeline projects have taken advantage of the benefits of safety factor calibration. This paper evaluates which potential benefits are available through safety factor calibration, particularly for wall thickness reduction purposes in ultra deepwater pipeline design. Calibrated safety factors are presented for some scenarios related to ultra deepwater export pipelines, considering “system collapse criteria” limit state. The calibrated safety factors are compared with the standardized safety factors presented by international pipeline design codes. The potential for safety factor reduction by the utilization of linepipes with more stringent manufacturing tolerances and the consideration of the thermal ageing imposed by coating application are also discussed.

1987 ◽  
Vol 109 (1) ◽  
pp. 9-22 ◽  
Author(s):  
C. P. Ellinas ◽  
P. W. J. Raven ◽  
A. C. Walker ◽  
P. Davies

This paper considers the application of the limit state philosophy of structural analysis to pipeline design. General aspects of the philosophy are discussed and the approach to the evaluation of safety factors is reviewed. The paper further considers the various limit and serviceability states which would be relevant to a pipeline and reviews the various factors which may require consideration, before a code embodying the limit state philosophy could be formulated. A review of the state of current knowledge on various aspects of geometry and material characteristics, loading and structural behavior is presented. It is intended that such a review can be used as the basis for a larger study to provide guidance and data for the evaluation of rational levels of safety factor. The major conclusion reached by the authors is that a limit state philosophy would be valuable in providing a suitable framework, which may highlight the significant aspects of pipeline design and which can most easily accommodate new requirements and results obtained from research.


Author(s):  
Andrew Cosham ◽  
Kenneth A. Macdonald

An engineering critical assessment (ECA) is commonly conducted during the design of an offshore pipeline in order to determine the tolerable size of flaws in the girth welds. API 579-1/ASME FFS-1 2016 and BS 7910:2013+A1:2015 Incorporating Corrigenda Nos. 1 and 2 give guidance on conducting fitness-for-service assessments of cracks and crack-like flaws. The essential data required for an assessment (nature, position and orientation of flaw; structural and weld geometry; stresses; yield and tensile strength; fracture toughness; etc.) is subject to uncertainty. That uncertainty is addressed through the use of bounding values. The use of extreme bounding values might be overly-conservative. A sensitivity analysis is one way of investigating the sensitivity of the results of an assessment to the input data. A structural reliability-based assessment (a probabilistic assessment) is an alternative. A probabilistic assessment is significantly more complicated than a deterministic assessment. API 579-1/ASME FFS-1 and BS 7910:2013 note that a sensitivity analysis, partial safety factors or a probabilistic analysis can be used to evaluate uncertainties in the input parameters. Annex K of BS 7910:2013 gives partial safety factors for different combinations of target reliability and variability of input data. ISO 16708:2006 gives guidance on the use of structural reliability-based limit-state methods in the design and operation of pipelines. The structural reliability-based assessment of circumferentially-orientated, surface crack-like flaw in a girth weld in a pipeline is used to illustrate the significance of the distributions of the difference between the wall thickness and the ovality (out-of-roundness) of two pipes when calculating the bounding value of the stress concentration factor due to axial misalignment. The (assumed) distributions of diameter, wall thickness, out-of-roundness, yield strength, etc. are based on Annex B of ISO 16708:2006. The (nominal) probability of failure is calculated. It is then used to inform the choice of an appropriate bounding value (i.e. a characteristic value) for axial misalignment.


Author(s):  
Eric Giry ◽  
Vincent Cocault-Duverger ◽  
Martin Pauthenet ◽  
Laurent Chec

Abstract Installation of subsea pipelines using reeling process is an attractive method. The pipeline is welded in long segments, typically several kilometers in length, and reeled onto a large diameter drum. The pipeline is then transported onto such reel to the offshore site where it is unreeled and lowered on the seabed. The deformation imposed on the pipeline while spooled onto the drum needs to be controlled so that local buckling is avoided. Mitigation of such failure is generally provided by proper pipeline design & reeling operation parameters. Buckling stems from excessive strain concentration near the circumferential weld area resulting from strength discontinuity at pipeline joints, mainly depending on steel wall thickness and yield strength. This requires the characterization of critical mismatches obtained by trial and error. Such method is a long process since each “trial” requires a complete Finite Element Analysis run. Such simulations are complex and lengthy. Occasionally, this can drive the selection of the pipeline minimum wall thickness, which is a key parameter for progressing the project. The timeframe of such method is therefore not compatible with such a key decision. The paper discusses the use of approximation models to capitalize on the data and alleviate the design cost. To do so, design of experiments and automation of the computational tool chain are implemented. It is demonstrated that initial complex chain of FEA computational process can be replaced using design space description and exploration techniques such as design of experiments combined with advanced statistical regression techniques in order to provide an approximation model. This paper presents the implementation of such methodology and the results are discussed.


Author(s):  
Gudfinnur Sigurdsson ◽  
Kim Mo̸rk ◽  
Olav Fyrileiv

Free spans often become a significant challenge in pipeline design and operation due to uneven seabed or seabed scouring effects. The trend towards deeper waters, harsher environment and installation of pipelines at very uneven seabed often implies a high number of free spans. High costs related to span intervention puts focus on minimizing these costs and still ensure integrity of the pipeline with respect to vortex induced vibrations (VIV) and associated fatigue damage. On the other hand the potential costs related to fatigue failure of a pipeline (recovery costs and economical loss) are enormous. Therefore it is essential to ensure that the probability of failure for free spans is within acceptable limits, e.g. as required by DNV-OS-F101 “Submarine Pipeline Systems”. This paper describes the structural reliability analysis performed to obtain the safety factors for free span fatigue design. Accumulation of fatigue damage due to VIV of free spans is associated with various sources of uncertainty. The important stochastic parameters are described, and the basis for the uncertainty modeling given. The calibration scope defined from a set of different pipeline cases, span scenarios, and environmental conditions is presented from which calibration results and sensitivities will be discussed.


2020 ◽  
Author(s):  
Nafiseh Kiani

Structural reliability analysis is necessary to predict the uncertainties which may endanger the safety of structures during their lifetime. Structural uncertainties are associated with design, construction and operation stages. In design of structures, different limit states or failure functions are suggested to be considered by design specifications. Load and resistance factors are two essential parameters which have significant impact on evaluating the uncertainties. These load and resistance factors are commonly determined using structural reliability methods. The purpose of this study is to determine the reliability index for a typical highway bridge by considering the maximum moment generated by vehicle live loads on the bridge as a random variable. The limit state function was formulated and reliability index was determined using the First Order Reliability Methods (FORM) method.


Author(s):  
Federico Barranco Cicilia ◽  
Edison Castro Prates de Lima ◽  
Lui´s Volnei Sudati Sagrilo

This paper presents a Load and Resistance Factor Design (LRFD) criterion applied to the design of Tension Leg Platform (TLP) tendons in their intact condition. The design criterion considers the Ultimate Limit State (ULS) of any tendon section along its whole length taking into account both dynamic interactions of load effects and the statistics of its associated extreme response. The partial safety factors are calibrated through a long-term reliability-based methodology for the storm environmental conditions, like hurricanes and winter storms, in deep waters of the Campeche Bay, Mexico. In the reliability analysis, the uncertainties in the definition of load effects and analytic limit state models for calculation of tendon strength and randomness of material properties are included. The results show that the partial safety factors reflect both uncertainty content and the importance of the random variables in structural reliability analysis. When tendons are designed according to the developed LRFD criterion, a less scattered variation of reliability indexes is obtained for different tendon sections across a single or various TLP designs.


2020 ◽  
Vol 5 (3) ◽  
pp. 349-369 ◽  
Author(s):  
Micheal Drass ◽  
Michael A. Kraus

Abstract This paper deals with the application of the semi-probabilistic design concept (level I, DIN EN 1990) to structural silicone adhesives in order to calibrate partial material safety factors for a stretch-based limit state equation. Based on the current legal situation for the application of structural sealants in façades, a new Eurocode-compliant design concept is introduced and compared to existing design codes (ETAG 002). This is followed by some background information on semi-probabilistic reliability modeling and the general framework of the Eurocode for the derivation of partial material safety factors at Level I. Within this paper, a specific partial material safety factor is derived for DOWSIL 993 silicone on the basis of experimental data. The data were then further evaluated under a stretch-based limit state function to obtain a partial material safety factor for that specific limit state function. This safety factor is then extended to the application in finite element calculation programs in such a way that it is possible for the first time to perform mesh-independent static calculations of silicone adhesive joints. This procedure thus allows for great optimization of structural sealant design with potentially high economical as well as sustainability benefits. An example for the static verification of a bonded façade construction by means of finite element calculation shows (i) the application of EC 0 to silicone adhesives and (ii) the transfer of the EC 0 method to the finite element method with the result that mesh-independent ultimate loads can be determined.


Author(s):  
Rune Dahlberg ◽  
Jan Mathisen

As the water depth of hydrocarbon discoveries becomes deeper, the technological challenges related to the design of mooring systems increases. Changing from steel catenary mooring systems (CMS) to fibre rope taut mooring systems (TMS) has been accompanied by an immense focus on how to qualify and approve fibre rope material for use in a TMS. This involves items related to specifications for manufacturing, handling and testing fibre ropes, as well as calibration of safety factors to use in the design of TMSs. One consequence of moving to a TMS is that the anchors will have to take more uplift load than in a conventional CMS, which makes the anchors a more critical component of the mooring system than before. The types of anchor normally available to the designer of a TMS are pile anchors, suction anchors and various types of plate anchors. Anchors of all types are designed and installed in ever-deeper water, but the safety of the designed mooring systems varies with the design code adopted. There is thus an obvious need for an industry standard, a design code for each anchor type that is calibrated based on structural reliability analysis using the current experience and knowledge in the industry. This paper compares anchor design codes that use total safety factors (TSF) with the DNV design code that uses partial safety factors and failure consequence classes. Examples of design codes for station-keeping systems that adopt the TSF format are API RP2SK and (assumed herein) the ISO code, which is under development. The comparison demonstrates that use of the safety format adopted in the DNV code provides more flexibility and ensures a uniform safety level of all components in a mooring system than the TSF format. If all types of anchor were designed to the same safety level it would be possible to compare anchors without worrying about differences in safety. A typical approach for calibration of a design code is described.


Author(s):  
Stig Goplen ◽  
Pa˚l Stro̸m ◽  
Erik Levold ◽  
Kim J. Mo̸rk

The HotPipe Project is a Joint Industry Project, whose overall objective is to prepare a DNV Recommended Practice to be used in structural design of high temperature/high pressure pipelines. The developed design criteria are based on the application of structural reliability methods to calibrate the partial safety factors involved. One of the three scenarios covered in this DNV-RP is buried pipes subjected to upheaval buckling which is discussed in this paper. The most significant factor in this scenario is uncertainty in the pipeline configuration and uncertainty in the pipe-soil interaction. The paper presents the background of the proposed soil capacities and the associated uncertainties for both uplift resistance and downward resistance in cohesive and non-cohesive soil. The paper links these soil models with the design requirements to upheaval buckling including: - Functional requirements i.e. survey data accuracy, smoothing of survey data, modeling of the pipeline, design conditions, soil cover etc.; - Trenching technology; - Qualification of the minimum soil cover, natural or artificial, with the aim to guarantee pipeline stability; - Assessment of pipeline response; - Pipe integrity checks and design criteria. The internal confidential project guideline has been completed and is currently in the process of being converted into an official DNV-RP-F110, to be published later this year.


Author(s):  
Enrico Torselletti ◽  
Roberto Bruschi ◽  
Furio Marchesani ◽  
Luigino Vitali

Buckle propagation under external pressure is a potential hazard during offshore pipeline laying in deep waters. It is normal design practice to install thicker pipe sections which, in case of buckle initiation and consequent propagation, can stop it so avoiding the lost of long pipe sections as well as threats to the installation equipment and dedicated personnel. There is still a series of questions the designer needs to answer when a new trunkline for very deep water applications is conceived: • What are the implications of the actual production technology (U-ing, O-ing and Expansion or Compression e.g. UO, UOE and UOC) on the propagation and arrest capacity of the line pipe, • How formulations for buckle arrestors design can be linked to a safety objective as required in modern submarine pipeline applications. The answers influence any decision on thickness, length, material and spacing of buckle arrestors. This paper gives an overview of buckle propagation and arrest phenomena and proposes a new design equation, applicable for both short and long buckle arrestors, based on available literature information and independent numerical analyses. Partial safety factors are recommended, based on a calibration process performed using structural reliability methods. Calibration aimed at fulfilling the safety objectives defined in DNV Offshore Standards OS-F101 and OS-F201.


Sign in / Sign up

Export Citation Format

Share Document