Second-Order Random Wave Kinematics and Resulting Loads on a Bottom-Fixed Slender Monopile

Author(s):  
Carl Trygve Stansberg ◽  
Andreas Amundsen ◽  
Sebastien Fouques ◽  
Ole David Økland

The importance of including second-order nonlinear random wave kinematics in the numerical prediction of drag-induced shear forces and moments, at various levels on a bottom-fixed slender monopile in 40m water depth, is investigated. A vertical circular cylinder of diameter 0.5m is considered, representing typical dimensions of members in jacket type foundations of offshore wind turbines. The focus is here on the wave loads only, and wind and a propeller are therefore not included in this study. In particular, the main focus is on the effects from second-order random wave kinematics on the structural quasi-static time-varying loads due to drag forces in heavy storm wave conditions. Comparisons are made to the traditional use of Airy waves with various ways of stretching. An in-house numerical FEM code developed for structural analysis, NIRWANA, is used for this study. Thus one purpose of the present work is also to verify the implementation of the second-order random waves in the code. The results show significant effects, especially in the wave zone. Extreme crests are around 15%–20% increased, free-surface extreme particle velocities increase by around 30%–40%, while the velocities at levels below MWL are, on the other hand, somewhat reduced. The resulting peak shear forces, and in particular the moments, are thereby increased by typically 50%–100% in the upper parts of the column. At the base the peak shear forces are comparable to the traditional methods, while moments are still somewhat higher. Another effect is the generation of more high-frequency load contributions, which may be important to address further with respect to natural frequencies of such towers.

Author(s):  
Carl Trygve Stansberg ◽  
Trygve Kristiansen

Slowly varying motions and drift forces of a large moored ship in random waves at 35m water depth are investigated by an experimental wave basin study in scale 1:50. A simple horizontal mooring set-up is used. A second-order wave correction is applied to minimize “parasitic” long waves. The effect on the ship motion from the correction is clearly seen, although less in random wave spectra than in pure bi-chromatic waves. Empirical quadratic transfer functions (QTFs) of the surge drift force are found by use of cross-bi-spectral analysis, in two different spectra have been obtained. The QTF levels increase significantly with lower wave frequencies (except at the diagonal), which is special for finite and shallow water. Furthermore, the QTF levels frequencies at low frequencies increase significantly out from the QTF diagonal. Thus Newman’s approximation should preferrably not be used in these cases. Using the LF waves as a direct excitation in a “linear” ship force analysis gives random records that compare reasonably well with those from the cross-bi-spectral analysis. This confirms the idea that the drift forces in shallow water are closely correlated to the second-order potential, and thereby by the second-order LF waves.


2020 ◽  
Vol 8 (11) ◽  
pp. 859
Author(s):  
Thanh-Dam Pham ◽  
Hyunkyoung Shin

Floating offshore wind turbines (FOWTs) have been installed in Europe and Japan with relatively modern technology. The installation of floating wind farms in deep water is recommended because the wind speed is stronger and more stable. The design of the FOWT must ensure it is able to withstand complex environmental conditions including wind, wave, current, and performance of the wind turbine. It needs simulation tools with fully integrated hydrodynamic-servo-elastic modeling capabilities for the floating offshore wind turbines. Most of the numerical simulation approaches consider only first-order hydrodynamic loads; however, the second-order hydrodynamic loads have an effect on a floating platform which is moored by a catenary mooring system. At the difference-frequencies of the incident wave components, the drift motion of a FOWT system is able to have large oscillation around its natural frequency. This paper presents the effects of second-order wave loads to the drift motion of a semi-submersible type. This work also aimed to validate the hydrodynamic model of Ulsan University (UOU) in-house codes through numerical simulations and model tests. The NREL FAST code was used for the fully coupled simulation, and in-house codes of UOU generates hydrodynamic coefficients as the input for the FAST code. The model test was performed in the water tank of UOU.


Author(s):  
Dag Myrhaug

This article provides a simple analytical method for giving estimates of random wave-driven drag forces on near-bed vegetation in shallow water from deepwater wind conditions. Results are exemplified using a Pierson–Moskowitz model wave spectrum for wind waves with the mean wind speed at the 10 m elevation above the sea surface as the parameter. The significant value of the drag force within a sea state of random waves is given, and an example typical for field conditions is presented. This method should serve as a useful tool for assessing random wave-induced drag force on vegetation in coastal zones and estuaries based on input from deepwater wind conditions.


Author(s):  
Erin E. Bachynski ◽  
Harald Ormberg

For shallow and intermediate water depths, large monopile foundations are considered to be promising with respect to the levelized cost of energy (LCOE) of offshore wind turbines. In order to reduce the LCOE by structural optimization and de-risk the resulting designs, the hydrodynamic loads must be computed efficiently and accurately. Three efficient methods for computing hydrodynamic loads are considered here: Morison’s equation with 1) undisturbed linear wave kinematics or 2) undisturbed second order Stokes wave kinematics, or 3) the MacCamy-Fuchs model, which is able to account for diffraction in short waves. Two reference turbines are considered in a simplified range of environmental conditions. For fatigue limit state calculations, accounting for diffraction effects was found to generally increase the estimated lifetime of the structure, particularly the tower. The importance of diffraction depends on the environmental conditions and the structure. For the case study of the NREL 5 MW design, the effect could be up to 10 % for the tower base and 2 % for the monopile under the mudline. The inclusion of second order wave kinematics did not have a large effect on the fatigue calculations, but had a significant impact on the structural loads in ultimate limit state conditions. For the NREL 5 MW design, a 30 % increase in the maximum bending moment under the mudline could be attributed to the second order wave kinematics; a 7 % increase was seen for the DTU 10 MW design.


Author(s):  
Antonio Pegalajar-Jurado ◽  
Henrik Bredmose

Abstract The simplified numerical models commonly employed for the pre-design of floaters for offshore wind only include linear wave loads, due to the higher computational effort required by second-order methods. Second-order hydrodynamics, on the other hand, need to be considered from an early stage, since they cause resonance of the moored structure. In the present study, we introduce a new method to include second-order inviscid hydrodynamic loads at a computational cost similar to linear loads. We compare the accelerated method to standard second-order diffraction theory and to second-order Rainey forcing with Sharma & Dean wave kinematics. The comparison, based on the loads and response of a spar floating wind turbine in surge and pitch, is carried out for three different sea states. We find that a good prediction of the second-order resonant response can be obtained with the accelerated method for medium and severe sea states, while the match is not as good for the mild sea state. The accelerated method is between 400 and 850 times faster than commonly used second-order approaches, for an 1-hour realization of a given sea state. This speed up allows the application of the load model in the floater pre-design, where efficient numerical models are the key to achieve optimal designs and the consequent reduction in the cost of the floater.


Author(s):  
Xinran Ji ◽  
Daoru Wang

Abstract Real sea waves are multidirectional, but most of researches are focused on the unidirectional wave. Special to the numerical wave basin based on OpenFOAM to simulate the propagation of multidirectional random wave and its interaction with structure has the insufficient of large amount of calculation, to overcome this problem, a one-way coupling model is established based on the potential theory and OpenFOAM wave basin, and the amount of calculation is reduced and the computational efficiency is improved. Base on the coupling model, the multidirectional random waves and its interaction with a large-scale offshore wind turbine foundation are simulated. In the outer domain, the multidirectional random wave is generated by the potential theory quickly. The interaction of multidirectional waves with the offshore wind turbine foundation is simulated in the inner domain by solving the Navier-Stokes equation. The result shows that the wave directionality has a significant effect on the interaction of multidirectional irregular waves with cylinder.


Author(s):  
Dag Myrhaug ◽  
Carl Trygve Stansberg ◽  
Hanne Therese Wist

Statistics of the nonlinear free surface elevation as well as the nonlinear random wave kinematics in terms of the horizontal velocity component in arbitrary water depth are addressed. Two different methods are considered: a simplified analytical approach based on second-order Stokes wave theory including the sum-frequency effect only, and a second-order random wave model including both sum-frequency and difference-frequency effects. The paper compares results for the statistics of the nonlinear free surface, and the consequences of neglecting the difference-frequency effect in the first method are discussed.


2017 ◽  
Vol 47 (7) ◽  
pp. 1657-1673 ◽  
Author(s):  
P. B. Smit ◽  
T. T. Janssen ◽  
T. H. C. Herbers

AbstractEstimation of second-order, near-surface wave kinematics is important for interpretation of ocean surface remote sensing and surface-following instruments, determining loading on offshore structures, and understanding of upper-ocean transport processes. Unfortunately, conventional wave theories based on Stokes-type expansions do not consider fluid motions at levels above the unperturbed fluid level. The usual practice of extrapolating the fluid kinematics from the unperturbed free surface to higher points in the fluid is generally reasonable for narrowband waves, but for broadband ocean waves this results in dramatic (and nonphysical) overestimation of surface velocities. Consequently, practical approximations for random waves are at best empirical and are often only loosely constrained by physical principles. In the present work, the authors formulate the governing equations for water waves in an incompressible and inviscid fluid, using a boundary-fitted coordinate system (i.e., sigma or s coordinates) to derive expressions for near-surface kinematics in nonlinear random waves from first principles. Comparison to a numerical model valid for highly nonlinear waves shows that the new results 1) are consistent with second-order Stokes theory, 2) are similar to extrapolation methods in narrowband waves, and 3) greatly improve estimates of surface kinematics in random seas.


Sign in / Sign up

Export Citation Format

Share Document