Effective Shear Area in One Dimensional Ship Hull Finite Element Models to Predict Natural Frequencies of Vibration

Author(s):  
Osvaldo Pinheiro de Souza e Silva ◽  
Severino Fonseca da Silva Neto ◽  
Ilson Paranhos Pasqualino ◽  
Antonio Carlos Ramos Troyman

This work discusses procedures used to determine effective shear area of ship sections. Five types of ships have been studied. Initially, the vertical natural frequencies of an acrylic scale model 3m in length in a laboratory at university are obtained from experimental tests and from a three dimensional numerical model, and are compared to those calculated from a one dimensional model which the effective shear area was calculated by a practical computational method based on thin-walled section Shear Flow Theory. The second studied ship was a ship employed in midshipmen training. Two models were made to complement some studies and vibration measurements made for those ships in the end of 1980 decade when some vibration problems in them were solved as a result of that effort. Comparisons were made between natural frequencies obtained experimentally, numerically from a three dimensional finite element model and from a one dimensional model in which effective shear area is considered. The third and fourth were, respectively, a tanker ship and an AHTS (Anchor Handling Tug Supply) boat, both with comparison between three and one dimensional models results out of water. Experimental tests had been performed in these two ships and their results were used in other comparison made after the inclusion of another important effect that acts simultaneously: the added mass. Finally, natural frequencies experimental and numerical results of a barge are presented. The natural frequencies numerical results of vertical hull vibration obtained from these approximations of effective shear areas for the five ships are finally discussed.

2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Giovanni Bernardini ◽  
Fabio Cetta ◽  
Luigi Morino

A novel Nth order finite element for interior acoustics and structural dynamics is presented, with N arbitrarily large. The element is based upon a three-dimensional extension of the Coons patch technique, which combines high-order Lagrange and Hermite interpolation schemes. Numerical applications are presented, which include the evaluation of the natural frequencies and modes of vibration of (1) air inside a cavity (interior acoustics) and (2) finite-thickness beams and plates (structural dynamics). The numerical results presented are assessed through a comparison with analytical and numerical results. They show that the proposed methodology is highly accurate. The main advantages however are (1) its flexibility in obtaining different level of accuracy (p-convergence) simply by increasing the number of nodes, as one would do for h-convergence, (2) the applicability to arbitrarily complex configurations, and (3) the ability to treat beam- and shell-like structures as three-dimensional small-thickness elements.


2011 ◽  
Vol 1 (3) ◽  
pp. 417-425 ◽  
Author(s):  
David P. Nickerson ◽  
Jonna R. Terkildsen ◽  
Kirk L. Hamilton ◽  
Peter J. Hunter

We present the development of a tool, which provides users with the ability to visualize and interact with a comprehensive description of a multi-scale model of the renal nephron. A one-dimensional anatomical model of the nephron has been created and is used for visualization and modelling of tubule transport in various nephron anatomical segments. Mathematical models of nephron segments are embedded in the one-dimensional model. At the cellular level, these segment models use models encoded in CellML to describe cellular and subcellular transport kinetics. A web-based presentation environment has been developed that allows the user to visualize and navigate through the multi-scale nephron model, including simulation results, at the different spatial scales encompassed by the model description. The Zinc extension to Firefox is used to provide an interactive three-dimensional view of the tubule model and the native Firefox rendering of scalable vector graphics is used to present schematic diagrams for cellular and subcellular scale models. The model viewer is embedded in a web page that dynamically presents content based on user input. For example, when viewing the whole nephron model, the user might be presented with information on the various embedded segment models as they select them in the three-dimensional model view. Alternatively, the user chooses to focus the model viewer on a cellular model located in a particular nephron segment in order to view the various membrane transport proteins. Selecting a specific protein may then present the user with a description of the mathematical model governing the behaviour of that protein—including the mathematical model itself and various simulation experiments used to validate the model against the literature.


2013 ◽  
Vol 688 ◽  
pp. 207-212 ◽  
Author(s):  
Karel Šobra ◽  
Petr Fajman

Currently, for reconstruction of historical trusses traditional carpentry joints are used. For many years these joints are constructed in the same way. Unfortunately, the mechanical behaviour of these joints and influence of their parts and geometry of joints to the joint stiffness are not well known. To improve these joints, it is necessary to know their behaviour. This paper describes a study recently completed on the vertical splice skew joint with a key. Experimental tests were performed and compared to the numerical results of three-dimensional finite element model created using ATENA 3D.


2013 ◽  
Vol 694-697 ◽  
pp. 3020-3024
Author(s):  
Hong Bing Wang ◽  
Zhi Rong Li ◽  
Chun Hua Sun

The dynamic performance of the piezoelectric vibrator used in ultrasonic EDM machine in natural frequencies has a great effect on machining precision. Firstly, Through theoretical analysis the dynamic characteristics of the piezoelectric vibrator is obtained. Then the three-dimensional model of the piezoelectric vibrator is constructed by using PRO/E software, and model analysis is carried by using FEM software. Through theoretical analysis and FEM simulation, the appropriate working frequency and mode of the piezoelectric vibrator was found, and the piezoelectric vibrator was fabricated. Experimented results show that the model analysis of frequency is accord with that of FEM.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Peter C. Chu

The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in air and water columns, burial depth/orientation in sediment, as well as height, area, and volume protruding. Model inputs consist of parameters of environment, mine characteristics, and initial release. This paper reviews near three decades’ effort on model development from one to three dimensions: (1) one-dimensional models predict the vertical position of the mine’s center of mass (COM) with the assumption of constant falling angle, (2) two-dimensional models predict the COM position in the (x,z) plane and the rotation around the y-axis, and (3) three-dimensional models predict the COM position in the (x,y,z) space and the rotation around the x-, y-, and z-axes. These models are verified using the data collected from mine impact burial experiments. The one-dimensional model only solves one momentum equation (in the z-direction). It cannot predict the mine trajectory and burial depth well. The two-dimensional model restricts the mine motion in the (x,z) plane (which requires motionless for the environmental fluids) and uses incorrect drag coefficients and inaccurate sediment dynamics. The prediction errors are large in the mine trajectory and burial depth prediction (six to ten times larger than the observed depth in sand bottom of the Monterey Bay). The three-dimensional model predicts the trajectory and burial depth relatively well for cylindrical, near-cylindrical mines, and operational mines such as Manta and Rockan mines.


2003 ◽  
Vol 13 (11) ◽  
pp. 1673-1687 ◽  
Author(s):  
DANIELE BOFFI ◽  
LESZEK DEMKOWICZ ◽  
MARTIN COSTABEL

In this paper we discuss the hp edge finite element approximation of the Maxwell cavity eigenproblem. We address the main arguments for the proof of the discrete compactness property. The proof is based on a conjectured L2 stability estimate for the involved polynomial spaces which has been verified numerically for p≤15 and illustrated with the corresponding one dimensional model problem.


2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>


Author(s):  
Patrick D. Lea ◽  
Charbel Farhat ◽  
Kevin G. Wang

This work extends and generalizes a recently developed fluid-structure coupled computational framework to model and simulate fluid-induced failure and fracture. In particular, a novel surface representation approach is proposed to represent a fractured fluid-structure interface in the context of embedded boundary method. This approach is generic in the sense that it is applicable to many different computational fracture models and methods, including the element deletion (ED) technique and the extended finite element method (XFEM). Two three-dimensional model problems are presented to demonstrate the salient features of the computational framework, and to compare the performance of ED and XFEM in the context of fluid-induced failure and fracture.


Sign in / Sign up

Export Citation Format

Share Document