Hydrodynamic Characteristics Analysis on the Dredging Dustpan Internal Flow Field Based on CFD

2016 ◽  
Author(s):  
Yu Lu ◽  
Ankang Hu ◽  
Xin Chang

Computational fluid dynamics (CFD) plays an important role in predicting the fluid characteristics throughout the engineering practice. With the developing of computers and CFD software, it has become a powerful tool in the hydrodynamics area. In this paper, the hydrodynamic characteristics of dredging dustpan internal flow field on the coastal engineering are further studied using CFD as a modeling and calculation tool. It is implemented in such way that the ICEM CFD software has been firstly employed to establish the full dredging dustpan model and gridding, the numerical simulation of internal flow field is then accurately performed by the FLUENT code under the conditions of different slurry concentration and particle diameter working on the dredging dustpan. Based on the calculation results, the effect of different slurry concentration and particle diameter on the dredging and transporting efficiency of dustpan is presented and discussed. It is shown that when the slurry concentration is low, particle diameter plays a leading role, and suction efficiency is proportional to particle diameter. However, the slurry concentration plays an important role and is inversely proportional to the suction efficiency as it is in a high level. It has been demonstrated that the present study is efficient and accurate for the numerical simulation of the dredging dustpan internal flow field.

2013 ◽  
Vol 444-445 ◽  
pp. 549-554
Author(s):  
Huan Ran Hu ◽  
Guan Xin Hong

It is important for the research of flight characteristics to master the distribution of wind field and the character of turbulence intensity in a complex-terrain mountain. Based on the potential flow theories in fluid dynamics, a numerical simulation method of complex terrain including asymmetrical and symmetrical mountains has been developed in this paper. In particular, asymmetrical mountains are simulated by the combination of two transformed quarter-semiellipsoids. Furthermore, mountain-induced airflow is calculated based on potential flow theory, which could reflect the characteristic of wind field. As an example, the wind field near Dingling airport in Beijing has been simulated and analyzed by this method. The results demonstrate that this method is suitable and accurate for engineering practice, and also applicable for flight dynamics characteristics analysis of aircrafts.


2016 ◽  
Vol 88 (3) ◽  
pp. 237-253 ◽  
Author(s):  
Nicholus Tayari Akankwasa ◽  
Huiting Lin ◽  
Yuze Zhang ◽  
Jun Wang

In order to regulate turbulence strength and determine airflow characteristics in a new dual-feed rotor spinning unit, the internal flow field is investigated. A computational fluid dynamics technique is employed to numerically study the three-dimensional model of the internal airflow in the new design. The effects of air velocity variation on turbulence strength, negative pressure, Re, and wall pressure distribution are investigated based on simulation data and previous studies. The results show that the turbulence strength and Re increased with increase in inlet air velocity. Pressure profiles inside the rotor varied significantly with positive pressure observed at the channel exits. Minimal inlet velocity maintains the flow field in the rotor interior below 100 m/s, which gives the ideal turbulence required to minimize yarn quality deterioration. The dual-feed rotor spinning unit showed more orderly streamline patterns with fewer vortices compared to the conventional one. The numerical simulation can provide insights on airflow studies and some guidelines for future prototyping and experiments to further improve the new design.


2012 ◽  
Vol 455-456 ◽  
pp. 1002-1008 ◽  
Author(s):  
Yi Ming Xu ◽  
Shi Ming Xu

Numerical simulation is used for researching the transient characteristic and internal characteristic of the reactor coolant pump under station blackout accident. The simulation method has been presented by analyzing difference scheme for governing equations. The analytical model of reactor coolant pump flow field has been established by analyzing adequately the influence of varying rotation speed to the pump external characteristic. Finally, the pump internal flow characteristic is exposed.


2015 ◽  
Vol 85 (15) ◽  
pp. 1590-1601 ◽  
Author(s):  
Liang Chen ◽  
Zhi-hua Feng ◽  
Teng-zhong Dong ◽  
Wei-hua Wang ◽  
Shuai Liu

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jingze Li ◽  
Dongrong Meng ◽  
Xun Qiao

Centrifugal pumps as turbine (PAT) are widely used in petrochemical and water conservancy industries. The research on the internal flow field and energy loss of PAT is of great significance to improve the performance and efficiency of PAT. In this paper, experimental and numerical simulation methods are used to study the energy loss and flow field. The results show that the numerical simulation method can accurately simulate the internal flow field of PAT. And the entropy generation theory is applied to visualize the internal energy loss of PAT through the comparison of total pressure loss and entropy generation. The highest energy loss among PAT components is the guide vane. The loss in the guide vane is mainly caused by the flow separation caused by the wake of the guide vane and the asymmetric structure of the volute. The losses in the impeller are mainly due to flow separation and wake. Besides, the unsteady simulation results show that rotor-stator interaction has a great influence on the gap between the impeller and the guide vane. The research results provide a reference for the design of the PAT. This study is beneficial to studying the dynamic and static interference and PAT vibration to improve the stability of the PAT.


Sign in / Sign up

Export Citation Format

Share Document