How to Account for Short-Term and Long-Term Variability in the Prediction of the 100 Years Response?

Author(s):  
Quentin Derbanne ◽  
Guillaume de Hauteclocque ◽  
Martin Dumont

Current practices in offshore unit design are based on the prediction of the 100 years response (tension, offset, stress...). The methodologies described in various standards (ISO, API...) are all very similar: several design environments are described with a combination of sea state, wind and current. Usually envelope contours are used, describing a set of environmental conditions corresponding to a 100 years return period. These design conditions are supposed to produce the highest responses. A time domain (or sometimes frequency domain) simulation is done on each of these short-term conditions, and the 3h most probable maximum (MPM) is computed for each. The highest MPM over all the design conditions is taken as the 100 years response. This approach completely neglects the short-term variability of the response. This paper compares several design methods with the exact 100 years response. The exact 100 years response is computed by integrating the conditional short-term distributions with respect to the probability density function of the environmental conditions. The various design methods are all based on a simplification of an Inverse First Order Reliability Method (IFORM) approach, which requires computing one or several design conditions corresponding to one or several return periods, each of these conditions being associated with a given short-term quantile. Computations are done using two datasets. At first realistic line tensions of 7 offshore units are used, based on a large number of simulations with a mooring software. On a second stage a more general parametric model using a Weibull distribution to describe the long-term variability and a Gumbel distribution to describe the short-term distribution of the 3h maximum is used. It is shown that the current methods are unconservative with respect to the exact 100 years response. A more accurate method is proposed, based on a 40 years return period associated with the quantile 90% and a correction factor of 1.04.

Author(s):  
Quentin Derbanne ◽  
Fabien Bigot ◽  
Guillaume de Hauteclocque

The evaluation of extreme bending moment corresponding to a 25 years return period requires very long simulations on a large number of sea states. This long term analysis is easy to do with a linear model of the ship response, but is impractical when using a time consuming model including non linear and slamming loads. In that case some simplified methods need to be applied. These methods are often based on Equivalent Design Waves (EDW) which are calibrated on the extreme linear value. The general practice is to define the EDW as a regular wave. A very simple method is to compute the non linear bending moment applying the pressure correction on the hull without recomputing the ship motions. A better method is to recompute in time domain the non linear ship response on this Design Wave. It is even possible to define a more realistic Design Wave, taking into account the frequency and directional content of the sea states used in the long term analysis: those waves are called Response Conditioned Wave and Directional Response Conditioned Waves. The different methods are applied to an Ultra Large Container Ship (ULCS). Hydro-structure calculations are carried out on a severe design sea state, taking into account Froude-Krylov pressure correction, slamming forces and whipping response. Results of a very long computation are compared to the results of the Design Wave approaches. Another method is proposed to compute very rare events. It is based on an artificial increase of the significant wave height of the sea state, and the assumption of the independence of the non linear effects to the significant wave height. Using this method it is possible, with a simulation of only a few hours, to predict a very rare short term event, corresponding to a very long return period. The results are compared to the Design Wave results and appear to be much more precise.


Author(s):  
Vidar Tregde ◽  
Arne Nestegård

Computational Fluid Dynamics (CFD) has been used in a screening process to calculate characteristic loads for a Free Fall Lifeboat (FFLB) during impact and submergence. The link between various input, e.g. environmental conditions and host specific data, resulting structural loads and motion of the lifeboat is explored. The screening can be used together with host specific environmental conditions to find structural design loads and motion restrictions. Response based analysis have been developed for both short term and long term predictions. For the short term predictions a sea state given by (Hs, Tp) on the 100-year contour line is identified and a three hour irregular sea state is simulated. This time history of surface elevations is used for a large number of random lifeboat drops. From these random drops a distribution of wave height and corresponding wave steepness is derived which is then input to an interpolation in the database of CFD screening results. The resulting responses are fitted to a Weibull distribution and the 90% quantile in this short term load distribution is determined. The long term response analysis is further developed from the short term analysis. The short term distributions for each (Hs, Tp) are combined with the probability of occurrence of the sea state, and long term distributions are derived for the responses similar to the short term analysis. The screening results are used to identify critical load cases which are further investigated.


Author(s):  
Feng Wang ◽  
Roger Burke ◽  
Anil Sablok ◽  
Kristoffer H. Aronsen ◽  
Oddgeir Dalane

Strength performance of a steel catenary riser tied back to a Spar is presented based on long term and short term analysis methodologies. The focus of the study is on response in the riser touch down zone, which is found to be the critical region based on short term analysis results. Short term riser response in design storms is computed based on multiple realizations of computed vessel motions with various return periods. Long term riser response is based on vessel motions for a set of 45,000 sea states, each lasting three hours. The metocean criteria for each sea state is computed based on fifty six years of hindcast wind and wave data. A randomly selected current profile is used in the long term riser analysis for each sea state. Weibull fitting is used to compute the extreme riser response from the response of the 45,000 sea states. Long term analysis results in the touch down zone, including maximum bending moment, minimum effective tension, and maximum utilization using DNV-OS-F201, are compared against those from the short term analysis. The comparison indicates that the short term analysis methodology normally followed in riser design is conservative compared to the more accurate, but computationally more expensive, long term analysis methods. The study also investigates the important role that current plays in the strength performance of the riser in the touch down zone.


Author(s):  
Fredhi Agung Prasetyo ◽  
Naoki Osawa ◽  
Mohammad Arif Kurniawan ◽  
Siti Komariyah

Abstract Specific design life could be identified by using fatigue damage assessment in the structure engineering field as well as in the maritime sector. Fatigue assessment is one of the assessments to be conducted during review of ship structure design. Fatigue assessment of ship structural member is mainly conducted based on specific environmental condition. In general, specific environmental condition, which is provided by Classification Society rules, is a long term sea-state data of North Atlantic Ocean. The wave scatter diagram presents the tabulation of a long term data of sea state history in the specific ocean. Therefore, a realistic encounter of wave scatter diagram is essential to simulate the variation of wave loadings applied on the ship structure in determination of fatigue design life. Since the application of North Atlantic ocean environmental condition is commonly used by major Classification societies, this condition might give the substantial deterioration on the fatigue design life of the ship that specially operate only in specific ocean area, i.e. South East Asia area. In this work, the wave scatter diagram of various environmental conditions is chosen and the statistical characteristic is compared. The wave load sequence that is used on the fatigue damage assessment are generated by using the concept of storm model, so that the changing nature of sea state could be emulated as in real ocean. Fatigue damage of a structure member of 220 meter Bulk Carriers is calculated based on various environmental conditions.


2013 ◽  
Vol 368 (1627) ◽  
pp. 20130186 ◽  
Author(s):  
Jasmin A. Godbold ◽  
Martin Solan

Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete ( Alitta virens ) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing.


Author(s):  
Mark Manzocchi ◽  
Vikas Kejriwal ◽  
Eric Hoo

Abstract This paper describes the methodology adopted for an analysis performed to assess the reliability of the moorings of a free weathervaning FPSO against the cyclone hazard. A joint distribution characterizing the long-term cyclone metocean conditions was fitted to a database of environmental conditions at the site of interest. A series of archetype cyclone histories were selected from the cyclone database to capture the evolving relationships between key environmental parameters during a cyclone. A response-surface model for extreme tension in the vessel moorings was developed for the short-term extreme vessel response as a function of environmental conditions by fitting the surface to an extensive series of time-domain vessel response analyses. The reliability of the mooring system was evaluated using Monte Carlo simulation by sampling from the fitted joint distribution of long-term cyclone characteristic and generating simulated cyclone time histories by scaling the archetype cyclones. The response model for short-term exceedance probability is used to develop the probability of exceedance within each simulated cyclone, and the probability of exceeding a given response is derived from the simulation.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5494
Author(s):  
Tsung-Yueh Lin ◽  
Yi-Qing Zhao ◽  
Hsin-Haou Huang

The 20-year cumulative fatigue damage of an offshore jacket substructure was estimated under the long-term local environmental conditions in the Taiwan Strait. Because of the nonlinearity of wave load for slender members of the structure, time-domain simulations of the dynamic finite element model were conducted for each sea state. By utilizing the Dirlik method to process the stress signals, the fatigue damages of joints were computed. Concerning the computational time, we propose a probability-based method of using a representative combination of environmental conditions in this study, which can considerably reduce the required number of evaluations prior to determining fatigue damage, thereby improving the process of preliminary design. The results show that only three sea states among 120 can represent 28% of the average damage ratio, and up to 17 sea states fully resolved the fatigue life.


1994 ◽  
Vol 29 (3) ◽  
pp. 165-172 ◽  
Author(s):  
Palle Lindgaard-Jørgensen ◽  
Klavs Bender

This paper reviewed the environmental consequences reported in more than three thousand accidents. Fifty-nine of the accidents reported environmental consequences, seven reported no environmental consequences, and for the remaining accidents, no information was available. Generally, the properties of a chemical, the dilution of the amount released, and the environmental conditions at the spill site are the parameters that determine the short-term environmental consequences. To evaluate the long-term effects, which have almost never been studied in the accidents reviewed, persistence, the tendency to accumulate in sediment and biota, and the long-term sub-lethal and chronic effects are the main parameters to be considered. While ecological consequences of accidents have been investigated more frequently in recent years, there has been no consistency in reporting methodology. An accident investigation methodology and a reporting format should therefore be developed and implemented on a broad international scale.


2012 ◽  
Vol 56 (01) ◽  
pp. 23-34
Author(s):  
Wengang Mao ◽  
Igor Rychlik

In practice the severity of ship response is measured by high quantiles of long-term distribution of the response. The distribution is estimated by combining the short-term distribution of the response with a long-term probability distribution of encountered sea states. The paper describes an alternative approach, the so-called Rice's method, based on estimation of expected number of upcrossings of high levels by stress during 1 year. The method requires description of long-term variability of the standard deviation, skewness, kurtosis, and zero upcrossing frequency of ship response. It is assumed that the parameters are functions of encountered significant wave height, heading angle, and ship speed. The relation can be estimated from the measured stresses or computed by dedicated software assuming rigid ship hull model. Then Winterstein's transformed Gaussian model is used to estimate the upcrossing rates of response during a sea state. The proposed method is validated using the full-scale measurements of a 2,800 TEU container ship during the first 6 months of 2008. Numerical estimation of 4,400 TEU container ship extreme of the extreme response for a 4400 TEU container ship illustrates the approach when no measurements are available.


2018 ◽  
Vol 75 (10) ◽  
pp. 1713-1722 ◽  
Author(s):  
Matthias Vignon

Long-term plasticity of otolith shape has become a unifying principle to use morphological differences as indicator of environmental conditions. Contrary to the longstanding paradigmatic view that otolith shape can only reflect residency in particular environmental conditions over long time periods, data emphasize that otolith ontogenetic trajectory may be reoriented in case of short-term episodes of environmental disturbance during early lifetime. Using geometric morphometrics, discrimination was posible in absence of growth-related differences between control and brown trout (Salmo trutta Linnaeus, 1758) that have experienced brief thermal stress prior to their emergence but have grown in similar conditions (i.e., cohabiting within the same aquarium) during 6 months. Data emphasize that brief stress during key developmental periods can durably influence ontogenetic trajectories, subsequent otolith development, and can consequently change otolith morphology in juveniles. Therefore, differences in shape between groups of fish may not be exclusively indicative of long-time residency in contrasted and (or) separated habitats as it is generally assumed. Moving beyond long-term assumptions is fundamental if otolith shape is to be used as an effective tool for management of fisheries resources in the future.


Sign in / Sign up

Export Citation Format

Share Document