Feasibility Study of the Floating Axis Wind Turbine: Preliminary Model Experiments

Author(s):  
Hiromichi Akimoto ◽  
Kazuhiro Iijima ◽  
Yasuhiro Takata

Floating Axis Wind Turbine is a concept of a floating vertical axis offshore wind turbine. In this design, a vertical axis turbine is directly mounted on a rotating spar buoy so that it does not require mechanical bearing supports of the heavy rotor. Multiple roller-generator units are on another small semi-sub float for extracting power from the rotating spar. A water tank model of 1/100 scale 5MW turbine and model power take-off units of about 1/20 scale are used for checking the concept. The results show the stability of the proposed turbine and demonstrates the function of roller-generator units.

2021 ◽  
Author(s):  
Saika Iwamatsu ◽  
Yasunori Nihei ◽  
Kazuhiro Iijima ◽  
Tomoki Ikoma ◽  
Tomoki Komori

Abstract In this study, a series of dedicated water tank tests were conducted in wind and waves to investigate the stability performance and turning motion of Floating Offshore Wind Turbine (FOWT) equipped with two vertical axis wind turbines (VAWT). The FOWT targeted in this study is called Multi-connection VAWT, which is a new type of FOWT moored by Single-Point-Mooring (SPM) system. We designed and manufactured two types of semi-submersible floating bodies. One is a type in which VAWTs are mounted in two places of a right-angled isosceles triangle (Type-A) on a single floater, and the other is two independent units equipped with VAWTs on two separate floaters centered on a moored body. This is a type in which two semi-submersible floating bodies are lined up in a straight line (Type-B). The experimental conditions were determined by scaling down to 1/100 using Froude’s scaling law based on a wind thrust load of 320 kN (rated wind speed of 12 m/s) assuming an actual machine. In the free yawing test in waves, Type-A turned downwards, while Type-B was barely affected by the waves. Furthermore, in the free yawing test in wind, both Type-A and Type-B turned leeward and stabilized at a final point where the wind load was balanced.


2018 ◽  
Vol 42 (2) ◽  
pp. 97-107 ◽  
Author(s):  
D Cevasco ◽  
M Collu ◽  
CM Rizzo ◽  
M Hall

Despite several potential advantages, relatively few studies and design support tools have been developed for floating vertical axis wind turbines. Due to the substantial aerodynamics differences, the analyses of vertical axis wind turbine on floating structures cannot be easily extended from what have been already done for horizontal axis wind turbines. Therefore, the main aim of the present work is to compare the dynamic response of the floating offshore wind turbine system adopting two different mooring dynamics approaches. Two versions of the in-house aero-hydro-mooring coupled model of dynamics for floating vertical axis wind turbine (FloVAWT) have been used, employing a mooring quasi-static model, which solves the equations using an energetic approach, and a modified version of floating vertical axis wind turbine, which instead couples with the lumped mass mooring line model MoorDyn. The results, in terms of mooring line tension, fatigue and response in frequency have been obtained and analysed, based on a 5 MW Darrieus type rotor supported by the OC4-DeepCwind semisubmersible.


2015 ◽  
Vol 74 ◽  
pp. 406-413 ◽  
Author(s):  
Wei Shi ◽  
Jonghoon Han ◽  
Changwan Kim ◽  
Daeyong Lee ◽  
Hyunkyoung Shin ◽  
...  

Author(s):  
Luca Vita ◽  
Uwe S. Paulsen ◽  
Helge A. Madsen ◽  
Per H. Nielsen ◽  
Petter A. Berthelsen ◽  
...  

This paper deals with the design of a 5MW floating offshore Vertical Axis Wind Turbine (VAWT). The design is based on a new offshore wind turbine concept (DeepWind concept), consisting of a Darrieus rotor mounted on a spar buoy support structure, which is anchored to the sea bed with mooring lines [1]. The design is carried out in an iterative process, involving the different sub-components and addressing several conflicting constraints. The present design does not aim to be the final optimum solution for this concept. Instead, the goal is to have a baseline model, based on the present technology, which can be improved in the future with new dedicated technological solutions. The rotor uses curved blades, which are designed in order to minimize the gravitational loads and to be produced by the pultrusion process. The floating platform is a slender cylindrical structure rotating along with the rotor, whose stability is achieved by adding ballast at the bottom. The platform is connected to the mooring lines with some rigid arms, which are necessary to absorb the torque transmitted by the rotor. The aero-elastic simulations are carried out with Hawc2, a numerical solver developed at Risø-DTU. The numerical simulations take into account the fully coupled aerodynamic and hydrodynamic loads on the structure, due to wind, waves and currents. The turbine is tested in operative conditions, at different sea states, selected according to the international offshore standards. The research is part of the European project DeepWind (2010–2014), which has been financed by the European Union (FP7-Future Emerging Technologies).


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6426
Author(s):  
Lin Pan ◽  
Ze Zhu ◽  
Haodong Xiao ◽  
Leichong Wang

In this study, the performance of offshore wind turbines at low tip speed ratio (TSR) is studied using computational fluid dynamics (CFD), and the performance of offshore wind turbines at low tip speed ratio (TSR) is improved by revising the blade structure. First, the parameters of vertical axis offshore wind turbine are designed based on the compactness iteration, a CFD simulation model is established, and the turbulence model is selected through simulation analysis to verify the independence of grid and time step. Compared with previous experimental results, it is shown that the two-dimensional simulation only considers the plane turbulence effect, and the simulation turbulence effect performs more obviously at a high tip ratio, while the three-dimensional simulation turbulence effect has well-fitting performance at high tip ratio. Second, a J-shaped blade with optimized lower surface is proposed. The study showed that the optimized J-shaped blade significantly improved its upwind torque and wind energy capture rate. Finally, the performance of the optimized J-blade offshore wind turbine is analyzed.


Author(s):  
Satya Kiran Raju Alluri ◽  
Trishanu Shit ◽  
Devender Gujjula ◽  
S. V. S. Phani Kumar ◽  
M. V. Ramana Murthy

Sign in / Sign up

Export Citation Format

Share Document