Comparison of Mooring Solutions and Array Systems for Point Absorbing Wave Energy Devices

Author(s):  
Jonas W. Ringsberg ◽  
Hanna Jansson ◽  
Shun-Han Yang ◽  
Martin Örgård ◽  
Erland Johnson

Most of the ocean energy technologies are considered to be in a pre-commercial phase and need technical development. This study focuses on design of mooring solutions and compares array systems of a specific floating point-absorbing wave energy converter (WEC) developed by the company Waves4Power. A full-scale prototype of the WEC is installed in Runde (Norway) where it is moored with three polyester mooring lines, each having one floater and one gravity anchor. Based on this reference installation, the method of systems engineering was used to propose twenty-two conceptual mooring solutions for different array systems. They were compared and reduced to four top concepts in a systematic elimination procedure using Pugh and Kesselring matrices. The top concepts were assessed in detail by means of LCOE (levelised cost of energy), LCA (life cycle analysis) and risk analyses. The fatigue life of the mooring lines and the energy capture were calculated using results obtained from coupled hydrodynamic and structure response analyses in the DNV-GL DeepC software. Two final concepts were proposed for the water depths 75 and 200 m.

2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Jonas W. Ringsberg ◽  
Hanna Jansson ◽  
Martin Örgård ◽  
Shun-Han Yang ◽  
Erland Johnson

Abstract Most of the ocean energy technologies are considered to be in a pre-commercial phase and need technical development. This study focuses on the design of mooring solutions and compares array systems of a specific floating point-absorbing wave energy converter (WEC) developed by the company Waves4Power. A full-scale prototype of the WEC is installed in Runde (Norway) where it is moored with three polyester mooring lines, each having one floater and one gravity anchor. Based on this reference installation, the method of systems engineering was used to propose 22 conceptual mooring solutions for different array systems. They were compared and reduced to four top concepts in a systematic elimination procedure using Pugh and Kesselring matrices. The top concepts were assessed in detail by means of levelized cost of energy (LCOE), life cycle analysis (LCA), and risk analyses. The fatigue life of the mooring lines and the energy capture were calculated using results obtained from coupled hydrodynamic and structure response analyses in the dnv-gl deepc software. Two final concepts were proposed for the water depths 75 and 200 m.


2020 ◽  
Vol 8 (10) ◽  
pp. 823
Author(s):  
Pablo Ruiz-Minguela ◽  
Vincenzo Nava ◽  
Jonathan Hodges ◽  
Jesús M. Blanco

The design of effective and economically viable wave energy devices involves complex decision-making about the product based on conceptual design information, including stakeholder requirements, functions, components and technical parameters. The great diversity of concepts makes it extremely difficult to create fair comparisons of the relative merits of the many different designs. Conventional design approaches have proved insufficient to guarantee wave energy technologies meet their technical and economic goals. Systems engineering can provide a suitable framework to overcome the obstacles towards a successful wave energy technology. The main objective of this work is to review the well-established systems engineering approaches that have been successfully implemented in complex engineering problems and to what extent they have been applied to wave energy technology development. The paper first reviews how system information can be organised in different design domains to guide the synthesis and analysis activities and the definition of requirements and metrics, as well as the search for solutions and decision-making. Then, an exhaustive literature review on the application of systems engineering approaches to wave energy development is presented per design domain. Finally, a set of conclusions is drawn, along with some suggestions for improving the effectiveness of wave energy technology development.


Author(s):  
Raymond Alcorn ◽  
Anthony Lewis ◽  
Mark Healy

The paper discusses the lessons learned from the European Funded Framework 7 Research project Components for Ocean Renewable Energy Systems (CORES) which developed and trialed new components and systems for ocean energy devices. The authors are the coordinator and project manager so the paper will give this overview of the project. This will include detail of the work packages, major achievements, significant impacts, summary results and outcomes of the sea trials.


Author(s):  
Made Jaya Muliawan ◽  
Zhen Gao ◽  
Torgeir Moan ◽  
Aurelien Babarit

The present paper summarizes analyses of a two-body floating wave energy converter (WEC) to determine the mooring tension and the effect of the mooring system on energy capture. Also, the effect of the power take-off (PTO) is assessed. An axisymmetric Wavebob-type WEC is chosen as the object of investigation. However, the PTO system is modeled in a simplified manner as ideal linear damping and spring terms that couple the motions of the two bodies. The analysis is performed using SIMO, which is a time domain simulation tool that accommodates the simulation of multibody systems with hydrodynamic interactions. In SIMO, docking cone features between the two bodies allow movement as per actual operation, and fenders are applied to represent end stops. Six alternative mooring configurations are applied to investigate the effect of mooring on power capture. Mooring analysis is performed to determine the necessary capacity of mooring lines for each configuration to carry the tension due to the WEC motion in extreme conditions. Hydrodynamic loads are determined using WAMIT. We assumed that the WEC will be operated to capture wave power at the Yeu site in France. The analysis is performed for several regular and irregular wave conditions according to wave data available for that site. Simulations are performed to study the effect of the PTO system, end stops settings and several mooring configurations on power capture.


2018 ◽  
Vol 1 (1 (Aug)) ◽  
pp. 1-7 ◽  
Author(s):  
D. Magagna ◽  
R. Monfardini ◽  
A. Uihlein

The SET-Plan declaration of intent for ocean energy has set ambitious targets for wave and tidal energy technologies. Tidal technologies are expected to reach a levelised cost of energy (LCOE) of 15 cEUR/kWh by 2025. To meet this target, technology costs need to be reduced by about 75 % from 2016 values. Cost-reduction of tidal technologies is expected to go hand in hand with technology deployment and further technology validation gained by the operation of first-of-a-kind tidal farms. In this paper we assess the learning investment needed to support the cost-reduction of tidal energy to meet the 2025 SET-Plan targets. The learning investment necessary to bring tidal energy to cost-competitiveness would be of about EUR 1.45 billion, requiring about 3.2 GW of installed capacity to achieve the LCOE target of 15 cEUR/kWh. Supporting the step growth for the sector requires the design of accompanying policies aimed at the industrialisation of the sector to support the creation of assembly and manufacturing facilities.


2014 ◽  
Vol 915-916 ◽  
pp. 381-384
Author(s):  
Guo Liang Zhu ◽  
Yan Jun Zhang ◽  
Feng Zhu

The current structure of the world energy system is in transition, the traditional methods have been unable to meet human's requirements to energy, and the collection and utilization of new energy sources have become a very promising research directions, such as solar energy, tidal energy, wind energy, etc. China's energy structure exists many problems; therefore we must vigorously develop renewable energy technologies. This article briefly discusses the issues of China's energy structure and the potential of wave energy, also introduces an effective use of sea wave energy devices, and analyses its structure, working principle and efficiency.


Various global studies have shown that ocean waves energy have large potential in renewable energy sector. Their role within renewable energy gets high priority in the future by the government of United Kingdom. The principle concept of wave energy is when wave energy is converted into potential energy by the wave energy devices to generate electricity. An understanding of the dynamic response of the devices and mooring lines is important for this paper. This paper deals with the analysis of the various effects that influence the different design of wave energy converter devices. The mooring design idea is also analyzed to show which mooring layout is suitable to fulfill the requirement. The design of mooring configuration also influence how wave power is extracted and how such system are operated and maintained. The effects investigated in this paper are regular and irregular waves, motion @ six degrees of freedom, maximum and minimum mooring tension, different waves direction, wave current, energy and power take off.


Sign in / Sign up

Export Citation Format

Share Document