scholarly journals Efficient Wave Modeling Using Non-Hydrostatic Pressure Distribution and Free Surface Tracking on Fixed Grids

2018 ◽  
Author(s):  
Hans Bihs ◽  
Arun Kamath ◽  
Ankit Aggarwal ◽  
Csaba Pakozdi

For the estimation of wave loads on offshore structures, relevant extreme wave events need to be identified. In order to achieve this, long term wave simulations of relatively large scales need to be performed. Computational Fluid Dynamics (CFD) based Numerical Wave Tanks (NWT) with an interface capturing two-phase flow approach typically require too large computational resources to achieve this efficiently. They are more suitable for the near-field hydrodynamics of steep and breaking wave impacts on the structures. In the current paper, a three-dimensional non-hydrostatic wave model is presented. While it also solves the Navier-Stokes equations, it employs an interface tracking method for the calculation of the free surface location. The algorithm for the simulation of the free surface is based on the continuity of the horizontal velocities along the vertical water column. With this approach, relatively fewer cells are needed in the vicinity of the air-water interface compared to CFD based NWTs. With coarser grids and larger time steps, the wave propagation can be accurately predicted. The numerical model solves the governing equations on an rectilinear grid, which allows for the employment of high-order finite differences. For time stepping, a fractional step method with implicit treatment of the diffusion terms is employed. The projection method is used for the calculation of the non-hydrostatic pressure. The resulting Poisson equation is solved with Hypres geometric multigrid preconditioned conjugated gradient algorithm. The numerical model is parallelized following the domain decomposition strategy and MPI communication between the individual processors. In the current paper, the capabilities of the new wave model are presented by comparing the wave propagation in the tank with the CFD approach in a 2D simulation. Further, a 3D simulation is carried out to determine the wave forces on a vertical cylinder. The calculated wave forces using the new approach is compared to that obtained using the CFD approach and experimental data. It is seen that the new approach provides a similar accuracy to that from the CFD approach while providing a large reduction in the time taken for the simulation. The gain is calculated to be about 4.5 for the 2D simulation and about 7.1 for the 3D simulation.

Author(s):  
Hans Bihs ◽  
Arun Kamath ◽  
Ankit Aggarwal ◽  
Csaba Pakozdi

For the estimation of wave loads on offshore structures, relevant extreme wave events need to be identified. In order to achieve this, long-term wave simulations of relatively large scales need to be performed. Computational fluid dynamics (CFD) based numerical wave tanks with an interface capturing two-phase flow approach typically require too large computational resources. In this paper, a three-dimensional (3D) nonhydrostatic wave model is presented, which solves the Navier–Stokes equations and employs an interface tracking method based on the continuity of the horizontal velocities along the vertical water column. With this approach, relatively fewer cells are needed in the vicinity of the air–water interface compared to CFD-based numerical wave tanks. The numerical model solves the governing equations on a rectilinear grid, which allows for the employment of high-order finite differences. The capabilities of the new wave model are presented by comparing the wave propagation in the tank with the CFD approach in a two-dimensional (2D) simulation. Further, a 3D simulation is carried out to determine the wave forces on a vertical cylinder. The calculated wave forces using the new approach are compared to those obtained using the CFD approach and experimental data. It is seen that the new approach provides a similar accuracy to that from the CFD approach while providing a large reduction in the time taken for the simulation. The gain is calculated to be about 4.5 for the 2D simulation and about 7.1 for the 3D simulation.


2012 ◽  
Vol 1 (33) ◽  
pp. 69 ◽  
Author(s):  
Liliana Vieira Pinheiro ◽  
Conceição Fortes ◽  
João Santos ◽  
José Leonel Fernandes

A set of procedures to evaluate the time series of the diffraction forces on a moored ship inside a harbor basin is presented. Nonlinear wave propagation is obtained using a Boussinesq finite element numerical model, BOUSS-WMH. Determination of hydrodynamic forces acting on the ship is achieved using a modified version of the WAMIT model. Finally, time series of the wave forces on the ship and of the inherent motions of the moored ship are obtained using BAS numerical model. The main focuses of this work are: the coupling of these three models and the modification of the method used in WAMIT to determine diffraction forces. Some simple and practical applications of this procedure are presented as well.


2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.


2016 ◽  
Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs ◽  
Arun Kamath ◽  
Dag Myrhaug ◽  
Øivind Asgeir Arnsten

The main purpose of the study is to investigate the breaking wave interaction with a group of four circular cylinders. The physical process of wave breaking involves many parameters and an accurate numerical modelling of breaking waves and the interaction with a structure remain a challenge. In the present study, the open-source (Computational Fluid Dynamics) CFD model REEF3D is used to simulate the breaking wave interaction with the multiple cylinders. The numerical model is based on the incompressible Reynolds Averaged Navier-Stokes (RANS) equations, the level set method for the free surface and the k–ω model for turbulence. The model uses a 5th-order conservative finite difference WENO scheme for the convective discretization and a 3rd-order Runge-Kutta scheme for time discretization. The numerical model is validated with experimental data of large-scale experiments for the free surface elevation and the breaking wave force on a single cylinder. A good agreement is seen between the numerical results and experimental data. Two different configurations with four cylinders are examined: in-line square configuration and diamond square configuration. The breaking wave forces on each cylinder in the group are computed for the two cases and the results are compared with the breaking wave force on a single isolated cylinder. Further, the study investigates the water surface elevations and the free surface flow features around the cylinders. In general, the cylinders in both configurations experience the maximum forces lower than the maximum force on a single cylinder. The results of the present study show that the interference effects from the neighbouring cylinders in a group strongly influence the kinematics around and the breaking wave forces on them.


Author(s):  
Hans Bihs ◽  
Weizhi Wang ◽  
Csaba Pakozdi ◽  
Arun Kamath

Abstract In situations where the calculation of ocean wave propagation and impact on structures are required, fast numerical solvers are desired in order to find relevant wave events. Computational fluid dynamics (CFD)-based numerical wave tanks (NWTs) emphasize on the hydrodynamic details such as fluid–structure interaction, which make them less ideal for the event identification due to the large computational resources involved. Therefore, a computationally efficient numerical wave model is needed to identify the events both for offshore deep-water wave fields and coastal wave fields where the bathymetry and coastline variations have strong impact on wave propagation. In the current paper, a new numerical wave model is represented that solves the Laplace equation for the flow potential and the nonlinear kinematic and dynamics free surface boundary conditions. This approach requires reduced computational resources compared to CFD-based NWTs. The resulting fully nonlinear potential flow solver REEF3D::FNPF uses a σ-coordinate grid for the computations. This allows the grid to follow the irregular bottom variation with great flexibility. The free surface boundary conditions are discretized using fifth-order weighted essentially non-oscillatory (WENO) finite difference methods and the third-order total variation diminishing (TVD) Runge–Kutta scheme for time stepping. The Laplace equation for the potential is solved with Hypre’s stabilized bi-conjugated gradient solver preconditioned with geometric multi-grid. REEF3D::FNPF is fully parallelized following the domain decomposition strategy and the message passing interface (MPI) communication protocol. The numerical results agree well with the experimental measurements in all tested cases and the model proves to be efficient and accurate for both offshore and coastal conditions.


1982 ◽  
Vol 1 (18) ◽  
pp. 41
Author(s):  
M.C. Burg ◽  
A. Marluzel ◽  
Y. Coeffe

This report presents a three-dimensional numerical model, which calculates by a finite-difference method the vertical profile of horizontal velocities. The unsteady three-dimensional Navier-Stok.es equations with a free surface are governing this flow. We assume a hydrostatic pressure, and simulate the turbulent effects by the Prandtl's mixing-length hypothesis. The model is validated by experiments carried out in a laboratory flume with a prismatic channel inclined 45° over the flow. Then, the model is applied successfully in Gironde estuary and coastal areas in France for the computation of tidal and wind generated currents.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs ◽  
Arun Kamath ◽  
Dag Myrhaug ◽  
Øivind Asgeir Arntsen

The main purpose of the study is to investigate the breaking wave interaction with a group of four circular cylinders. The physical process of wave breaking involves many parameters, and an accurate numerical modeling of breaking waves and the interaction with a structure remain a challenge. In the present study, the open-source computational fluid dynamics (CFD) model REEF3D is used to simulate the breaking wave interaction with multiple cylinders. The numerical model is based on the incompressible Reynolds-averaged Navier–Stokes (RANS) equations, the level set method for the free surface, and the k–ω model for turbulence. The numerical model is validated with experimental data of large-scale experiments for the free surface elevation and the breaking wave force on a single cylinder. A good agreement is obtained between the numerical results and experimental data. Two different configurations with four cylinders are examined: in-line square configuration and diamond square configuration. For both configurations, three different tank widths and four different spacings between the cylinders are investigated. The breaking wave forces on each cylinder in the group are computed for each case for the two configurations, and the results are compared with the breaking wave force on a single isolated cylinder. Furthermore, the study investigates the water surface elevations and the free surface flow features around the cylinders. For the closely spaced cylinders in a relatively narrower tank, the cylinders in both configurations experience the maximum forces lower than the maximum force on a single cylinder. But for the widely spaced cylinder in a relatively wider tank, the forces are higher and lower for the upstream cylinders and downstream cylinders, respectively, than the maximum force on a single isolated cylinder. The results of the present study show that the interference effects from the neighboring cylinders in a group strongly influence the kinematics around and the breaking wave forces on them.


2011 ◽  
Vol 23 (2) ◽  
pp. 212-223 ◽  
Author(s):  
De-chao Hu ◽  
Bei-lin Fan ◽  
Guang-qian Wang ◽  
Hong-wu Zhang

Author(s):  
Jenny M. V. Trumars ◽  
Johan O. Jonsson ◽  
Lars Bergdahl

A phase averaging wave model (SWAN) is used to transform offshore sea states to the near to shore site of an offshore wind energy converter. The supporting structure of the wind turbine consists of a cylindrical monopile, and the wave forces and resulting base moments on it are calculated by Morison’s equation integrating from the bottom to the instantaneous free surface. For that purpose the wave-motion in the time domain at the monopile is realized by a second-order random wave model.


Sign in / Sign up

Export Citation Format

Share Document