Numerical Modelling of Breaking Wave Interaction With a Group of Four Vertical Slender Cylinders in Square Arrangements

2016 ◽  
Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs ◽  
Arun Kamath ◽  
Dag Myrhaug ◽  
Øivind Asgeir Arnsten

The main purpose of the study is to investigate the breaking wave interaction with a group of four circular cylinders. The physical process of wave breaking involves many parameters and an accurate numerical modelling of breaking waves and the interaction with a structure remain a challenge. In the present study, the open-source (Computational Fluid Dynamics) CFD model REEF3D is used to simulate the breaking wave interaction with the multiple cylinders. The numerical model is based on the incompressible Reynolds Averaged Navier-Stokes (RANS) equations, the level set method for the free surface and the k–ω model for turbulence. The model uses a 5th-order conservative finite difference WENO scheme for the convective discretization and a 3rd-order Runge-Kutta scheme for time discretization. The numerical model is validated with experimental data of large-scale experiments for the free surface elevation and the breaking wave force on a single cylinder. A good agreement is seen between the numerical results and experimental data. Two different configurations with four cylinders are examined: in-line square configuration and diamond square configuration. The breaking wave forces on each cylinder in the group are computed for the two cases and the results are compared with the breaking wave force on a single isolated cylinder. Further, the study investigates the water surface elevations and the free surface flow features around the cylinders. In general, the cylinders in both configurations experience the maximum forces lower than the maximum force on a single cylinder. The results of the present study show that the interference effects from the neighbouring cylinders in a group strongly influence the kinematics around and the breaking wave forces on them.

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs ◽  
Arun Kamath ◽  
Dag Myrhaug ◽  
Øivind Asgeir Arntsen

The main purpose of the study is to investigate the breaking wave interaction with a group of four circular cylinders. The physical process of wave breaking involves many parameters, and an accurate numerical modeling of breaking waves and the interaction with a structure remain a challenge. In the present study, the open-source computational fluid dynamics (CFD) model REEF3D is used to simulate the breaking wave interaction with multiple cylinders. The numerical model is based on the incompressible Reynolds-averaged Navier–Stokes (RANS) equations, the level set method for the free surface, and the k–ω model for turbulence. The numerical model is validated with experimental data of large-scale experiments for the free surface elevation and the breaking wave force on a single cylinder. A good agreement is obtained between the numerical results and experimental data. Two different configurations with four cylinders are examined: in-line square configuration and diamond square configuration. For both configurations, three different tank widths and four different spacings between the cylinders are investigated. The breaking wave forces on each cylinder in the group are computed for each case for the two configurations, and the results are compared with the breaking wave force on a single isolated cylinder. Furthermore, the study investigates the water surface elevations and the free surface flow features around the cylinders. For the closely spaced cylinders in a relatively narrower tank, the cylinders in both configurations experience the maximum forces lower than the maximum force on a single cylinder. But for the widely spaced cylinder in a relatively wider tank, the forces are higher and lower for the upstream cylinders and downstream cylinders, respectively, than the maximum force on a single isolated cylinder. The results of the present study show that the interference effects from the neighboring cylinders in a group strongly influence the kinematics around and the breaking wave forces on them.


2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Zhenyu Liu ◽  
Zhen Guo ◽  
Yuzhe Dou ◽  
Fanyu Zeng

Most offshore wind turbines are installed in shallow water and exposed to breaking waves. Previous numerical studies focusing on breaking wave forces generally ignored the seabed permeability. In this paper, a numerical model based on Volume-Averaged Reynolds Averaged Navier–Stokes equations (VARANS) is employed to reveal the process of a solitary wave interacting with a rigid pile over a permeable slope. Through applying the Forchheimer saturated drag equation, effects of seabed permeability on fluid motions are simulated. The reliability of the present model is verified by comparisons between experimentally obtained data and the numerical results. Further, 190 cases are simulated and the effects of different parameters on breaking wave forces on the pile are studied systematically. Results indicate that over a permeable seabed, the maximum breaking wave forces can occur not only when waves break just before the pile, but also when a “secondary wave wall” slams against the pile, after wave breaking. With the initial wave height increasing, breaking wave forces will increase, but the growth can decrease as the slope angle and permeability increase. For inclined piles around the wave breaking point, the maximum breaking wave force usually occurs with an inclination angle of α = −22.5° or 0°.


2017 ◽  
Vol 14 (2) ◽  
pp. 115-133
Author(s):  
Anoop I. Shirkol ◽  
Nasar Thuvanismail

Wave interaction with a floating thin elastic plate which can be used as floating platform is analyzed using Boundary Element Method (BEM) for different shapes such as rectangular, circular and triangular. Different support conditions are considered and the performance of the floating platform under the action of ocean waves is explored. The study is performed under the assumption of linearized water wave theory and the floating elastic plate is modelled based on the Euler-Bernoulli beam theory. Using Galerkin’s approach, a numerical model has been developed and the hydrodynamic loading on the floating elastic plate of shallow draft (thickness) is investigated. The wave forces are generated by the numerical model for the analysis of the floating plate. The resulting bending moment and optimal deflection due to encountering wave force is analysed. The present study will be helpful in design and analysis of the large floating platform in ocean waves.


2020 ◽  
Vol 10 (4) ◽  
pp. 1347
Author(s):  
Sen Qu ◽  
Shengnan Liu ◽  
Muk Chen Ong ◽  
Shuzheng Sun ◽  
Huilong Ren

The purpose of this paper is to numerically simulate the breaking wave past a standing cylinder with different transverse inclined angles. The numerical simulations are carried out by solving the Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations with the k − ω S S T turbulence model. The air–water interface is captured using the Volume of Fluid (VOF) method. The convergence studies on the grid and time-step are performed by examining the total horizontal breaking wave forces on the vertical cylinder. The present numerical results have been validated with the published experimental data. A good agreement is obtained between the present numerical results and the experimental data in terms of the surface elevation and the horizontal breaking wave force. Moreover, the total horizontal breaking wave force is decomposed into low-order and high-order wave forces through Fast Fourier Transform (FFT). It is observed that the free surface elevations in front of the cylinder and the normalized high-order wave force have a minimum value when the transverse inclined angle of the cylinder is 45°. The secondary load causing the higher-harmonic ringing motion of structures is not observed when the cylinder is placed with the transverse inclined angles of 30° and 45°.


Author(s):  
Ankit Aggarwal ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Hans Bihs ◽  
Øivind Asgeir Arnsten

In the present study, the irregular wave forces on a fully submerged circular cylinder are investigated using the open-source computational fluid dynamics (CFD) model REEF3D. A complete three dimensional representation of the ocean waves requires the consideration of the sea surface as an irregular wave train with the random characteristics. The numerical model uses the incompressible Reynolds-averaged Navier-Stokes (RANS) equations together with the continuity equation to solve the fluid flow problem. Turbulence modeling is carried out using the two equation k-ω model. Spatial discretization is done using an uniform Cartesian grid. The level set method is used for computing the free surface. For time discretization, third-order total variation diminishing (TVD) Runge Kutta scheme is used. Ghost cell boundary method is used for implementing the complex geometries in the numerical model. MPI is used for the exchange of the value of a ghost cell. Relaxation method is used for the wave generation. The numerical model is validated for the irregular waves for a wave tank without any structure. Further, the numerical model is validated by comparing the numerical results with the experimental data for a fully submerged circular cylinder under regular waves and irregular waves. The numerical results are in a good agreement with the experimental data for the regular and irregular wave forces. The JONSWAP spectrum is used for the wave generation. The free surface features and kinematics around the cylinder is also presented and discussed.


2006 ◽  
Vol 58 (1-4) ◽  
pp. 19-30 ◽  
Author(s):  
Weihua Mo ◽  
Kai Irschik ◽  
Hocine Oumeraci ◽  
Philip L. -F. Liu

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Jithin Jose ◽  
Olga Podrażka ◽  
Ove Tobias Gudmestad ◽  
Witold Cieślikiewicz

Wave breaking is one of the major concerns for offshore structures installed in shallow waters. Impulsive breaking wave forces sometimes govern the design of such structures, particularly in areas with a sloping sea bottom. Most of the existing offshore wind turbines were installed in shallow water regions. Among fixed-type support structures for offshore wind turbines, jacket structures have become popular in recent times as the water depth for fixed offshore wind structures increases. However, there are many uncertainties in estimating breaking wave forces on a jacket structure, as only a limited number of past studies have estimated these forces. Present study is based on the WaveSlam experiment carried out in 2013, in which a jacket structure of 1:8 scale was tested for several breaking wave conditions. The total and local wave slamming forces are obtained from the experimental measured forces, using two different filtering methods. The total wave slamming forces are filtered from the measured forces using the empirical mode decomposition (EMD) method, and local slamming forces are obtained by the frequency response function (FRF) method. From these results, the peak slamming forces and slamming coefficients on the jacket members are estimated. The breaking wave forces are found to be dependent on various breaking wave parameters such as breaking wave height, wave period, wave front asymmetry, and wave-breaking positions. These wave parameters are estimated from the wave gauge measurements taken during the experiment. The dependency of the wave slamming forces on these estimated wave parameters is also investigated.


2018 ◽  
Vol 141 ◽  
pp. 52-67 ◽  
Author(s):  
L. Martinelli ◽  
P. Ruol ◽  
M. Volpato ◽  
C. Favaretto ◽  
M. Castellino ◽  
...  

Author(s):  
Osamu Saijo ◽  
Hiroaki Eto

A structural design of the underwater observation tower constructed at wave breaking zone was studied in this research. Though the under water observation tower seems to be a rotational shell structure from its shape, actually, the rigid frame of beams and ribs exits inside wall, in which the frames are covered with curved plate element firmly against seawater pressure. Assuming that the observation tower was a pseudo-cylindrical shell, two results through our conducted research were applied for a practical structural analysis of the underwater observation tower. One is the unique and simple formula on added mass depending on elastic vibration, the other is transformation of total breaking wave forces into the wave pressure distribution over the surface of the observation tower. Using those results, the structural characteristic concerning displacement of the under water observation tower was examined through our own results.


Author(s):  
Min-Su Park ◽  
Youn-Ju Jeong ◽  
Young-Jun You

The substructure for offshore wind turbines is strongly influenced by the effect of wave forces as the size of substructure increases. Therefore, it is very important to reduce the wave force acting on substructures. In the present study the hybrid substructure, which is composed of a multi-cylinder having different radius near free surface and a gravity substructure at the bottom of multi-cylinder, is suggested to reduce the wave forces. The fluid domain is divided into two regions to calculate the wave forces acting on the hybrid substructure with multi-cylinder and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. The comparison between the mono pile and the hybrid substructure is made for wave forces. Using the wave forces obtained from this study, the structural analysis of hybrid substructure is carried out through ANSYS mechanical. In order to investigate the resonance between the wind turbine and the hybrid substructure, the modal analysis is also carried out.


Sign in / Sign up

Export Citation Format

Share Document