CFD-Based Numerical Wave Basin for FPSO in Irregular Waves

Author(s):  
Aldric Baquet ◽  
Hyunchul Jang ◽  
Ho-Joon Lim ◽  
Johyun Kyoung ◽  
Nicolas Tcherniguin ◽  
...  

Abstract Following the successful application of CFD-based Numerical Wave Basin (NWB) to GBS, TLP and Semisubmersible platforms [1–4], the same methodology has been applied to simulate FPSO hull motion responses to irregular waves. It has been found that the NWB modeling practices developed for the other floater types must be modified for application to an FPSO. This paper describes how the NWB modeling practices have been improved, and then compares results from NWB simulations with those from physical model testing.

2021 ◽  
Author(s):  
Benjamin Bouscasse ◽  
Andrea Califano ◽  
Young Myung Choi ◽  
Xu Haihua ◽  
Jang Whan Kim ◽  
...  

Abstract There is increasing interest in numerical wave simulations as a tool to design offshore structures, especially for the prediction of stochastic nonlinear wave loads like those related to air-gap and wave impact. Though the simulations cannot replace all experiments, they are now competitive on some topics such as the computations of wind and current coefficients. To proceed further it is necessary to improve the procedure to account for another complex environmental factor, wave motion. This paper addresses an industrial collaboration to develop modeling practices and qualification criteria of CFD-based numerical wave tank for offshore applications. As a part of the effort to develop reliable numerical wave modeling practices in the framework of the “Reproducible Offshore CFD JIP”, qualification criteria are formulated for the wave solutions generated from either potential-flow based codes in Part 1 of this work. Part 2 presents first a set of solutions for forcing the qualified waves obtained with the potential codes in the CFD domain. Those solutions follow a set of coupling protocols previously proposed in the JIP framework. Two potential codes and two CFD solvers are combined, so that four possible methods of generating waves and modalities are described. Two different potential models are considered, one using the higher order spectral method for numerical wave tank (HOS-NWT), and another using the finite-element method in the horizontal direction and a modal expansion after a sigma transform in the vertical direction (solver is called TPNWT). Both are equipped with a breaking model to generate extreme sea states. The two CFD solvers tested are Simcenter STAR-CCM+ and OpenFOAM. Simulation setups are proposed for both software. Simulation results from eight academic or industrial partners are presented for two sets of 2D test cases in deep water, one with regular waves and one with irregular waves, both with one very steep condition (ratio of wave height over wavelength of 10% for regular waves and 1000 year return period for Gulf of Mexico for irregular waves). The irregular waves are simulated for 10 sets of 3 hours to apply a stochastic approach to verify the quality of the waves generated in the numerical domain. Attention is given to the wave spectrum and the ensemble probability of the crest distribution, both obtained from the wave elevation at the center of the domain.


2020 ◽  
pp. 38-60
Author(s):  
Lin Li ◽  
Farshad Amini ◽  
Yi Pan ◽  
Saiyu Yuan ◽  
Bora Cetin

2012 ◽  
Vol 1 (33) ◽  
pp. 5 ◽  
Author(s):  
Hernan Fernandez ◽  
Gregorio Iglesias ◽  
Rodrigo Carballo ◽  
Alberte Castro ◽  
Marcos Sánchez ◽  
...  

The development of efficient, reliable Wave Energy Converters (WECs) is a prerequisite for wave energy to become a commercially viable energy source. Intensive research is currently under way on a number of WECs, among which WaveCat©—a new WEC recently patented by the University of Santiago de Compostela. In this sense, this paper describes the WaveCat concept and its ongoing development and optimization. WaveCat is a floating WEC intended for operation in intermediate water depths (50–100 m). Like a catamaran, it consists of two hulls—from which it derives its name. The difference with a conventional catamaran is that the hulls are not parallel but convergent; they are joined at the stern, forming a wedge in plan view. Physical model tests of a 1:30 model were conducted in a wave tank using both regular and irregular waves. In addition to the waves and overtopping rates, the model displacements were monitored using a non-intrusive system. The results of the physical model tests will be used to validate the 3D numerical model, which in turn will be used to optimize the design of WaveCat for best performance under a given set of wave conditions.


Author(s):  
Claudio A. Rodríguez ◽  
F. Taveira-Pinto ◽  
P. Rosa-Santos

A new concept of wave energy device (CECO) has been proposed and developed at the Hydraulics, Water Resources and Environment Division of the Faculty of Engineering of the University of Porto (FEUP). In a first stage, the proof of concept was performed through physical model tests at the wave basin (Rosa-Santos et al., 2015). These experimental results demonstrated the feasibility of the concept to harness wave energy and provided a preliminary assessment of its performance. Later, an extensive experimental campaign was conducted with an enhanced 1:20 scale model of CECO under regular and irregular long and short-crested waves (Marinheiro et al., 2015). An electric PTO system with adjustable damping levels was also installed on CECO as a mechanism of quantification of the WEC power. The results of regular waves tests have been used to validate a numerical model to gain insight into different potential configurations of CECO and its performance (López et al., 2017a,b). This paper presents the results and analyses of the model tests in irregular waves. A simplified approach based on spectral analyses of the WEC motions is presented as a means of experimental assessment of the damping level of the PTO mechanism and its effect on the WEC power absorption. Transfer functions are also computed to identify nonlinear effects associated to higher waves and to characterize the range of periods where wave absorption is maximized. Furthermore, based on the comparison of the present experimental results with those corresponding to a linear numerical potential model, some discussions are addressed regarding viscous and other nonlinear effects on CECO performance.


Author(s):  
Sebastien Gueydon

Abstract With their light weights, small components like braces and heave plates and steady trim angle caused by the wind loads acting on the rotor, semisubmersible foundations used as support platform for wind turbines exhibit a complex behaviour where viscous loading play an important role. The work done by the Offshore Code Comparison Collaboration Continued with Correlation (OC5) project has shown that standard engineering tools were not always able to predict accurately the motions of the DeepCwind semisubmersible that were measured in a basin. The correct amplitude of the motions at the natural periods of this system appeared to be difficult to obtain with simulations (especially the low frequency surge, and the pitch resonant motion). In view of the complexity of the system, it was not possible to clearly identify the causes of the differences between the simulations and the model-test results. A follow-on validation campaign was therefore performed at the Maritime Research Institute Netherlands (MARIN) under the MARINET2 project with the same floating substructure, with a focus on better understanding the hydrodynamic loads and reducing uncertainty in the tests by minimizing the system complexity. The wind turbine was replaced by a stiff tower with resembling inertia properties. The mooring system was simplified by using taut-spring lines with equivalent linear stiffness in surge. This paper reviews the new tests done with the simplified set-up and examines the differences with previous tests done with more complex test set-ups. The main motivation of this work is to study how variations of an experimental set-up can affect the outcome of tests in a wave basin. To start with, the main parameters of the systems (inertia, hydrostatics, and mooring stiffness) for all set-ups are characterized to check how similar they are. Then the level of damping in all systems is compared. Finally, the paper looks at how well the motion responses of this semisubmersible in waves correlate between all these campaigns.


Author(s):  
Christian Schmittner ◽  
Sascha Kosleck ◽  
Janou Hennig

A major goal in current model test practice is the correct modeling of the environmental conditions, as they denote the starting point for all further hydrodynamic analyses. As a standard, wave power spectra are calibrated prior to the actual model tests whereas the corresponding wave group spectra follow from the arbitrarily chosen wave seeds and are not being predicted in advance. Wave crest and height distributions can be determined from the measured wave time traces at different reference locations in the basin but they are not calibrated purposely either. In this paper, a numerical wave tank based on a boundary element method is used to predict wave time traces measured in the wave basin. Resulting wave crest and height distributions are compared with theoretical distribution functions and wave measurements in MARIN’s Offshore Basin. Some thoughts on a possible application to the generation of “deterministic wave seeds” conclude the paper.


Author(s):  
Hidetaka Houtani ◽  
Takuji Waseda ◽  
Wataru Fujimoto ◽  
Keiji Kiyomatsu ◽  
Katsuji Tanizawa

A method to produce freak waves with arbitrary spectrum in a fully directional wave basin is presented here. This is an extension of Waseda, Houtani and Tanizawa at OMAE 2013[1], which used “HOSM-WG” based on the higher-order spectral method (HOSM). We used the following three methods to improve the HOSM-WG in [1]: “separation of free waves from bound waves,” “using Biesel’s transfer function in wavenumber space” and “using Schaffer’s 2nd-order wave maker control method.” Modulational wave trains, freak waves in unidirectional irregular waves and freak waves in short-crested irregular waves were generated in a wave basin. The experimental results using the improved HOSM-WG were compared to the HOSM simulation, and good agreements were found. The effectiveness of the improved HOSM-WG was ascertained. We showed that the difference between HOSM-WG and HOSM simulations became larger as wave steepness, frequency bandwidth of the spectrum or directional spreading became larger.


Author(s):  
Sheng Xu ◽  
C. Guedes Soares

Abstract In this paper, a taut wire mooring system has been designed consisting of three wire ropes symmetrically arranged. The power take-off system is modelled by a linear spring and a heave plate to simulate the linear damping of the power take-off. A series of regular wave tests in head seas are performed to study the dynamics of the system. Irregular wave tests were then conducted to simulate the system performance in the operational sea states, where the irregular waves are modelled by the Jonswap spectrum. The WEC motion responses and mooring tensions are studied. The short term mooring fatigue damage estimated by different spectral methods are compared to the rainflow counting method. The spectral method for estimating fatigue damage include the Dirlik formula, Jiao-Moan method and Tovo-Benasciutti approach. The accuracy of spectral methods for predicting mooring fatigue damage are discussed.


Sign in / Sign up

Export Citation Format

Share Document