Coupling of Potential Flow and CFD Model for Fluid and Structure Interactions

2021 ◽  
Author(s):  
Haihua Xu ◽  
Yali Zhang ◽  
Harrif Santo ◽  
Kie Hian Chua ◽  
Yun Zhi Law ◽  
...  

Abstract Computational Fluid Dynamics (CFD) tools are widely used to simulate wave and structure interactions in marine & offshore industry. However, conventional CFD tools require significant computational resources. This is largely due to the requirement of large computational domain to ensure adequate development of nonlinear wave evolutions as well as to avoid boundary effects resulting from wave interacting with any fixed or floating structures in the domain. Furthermore, very fine mesh elements are required to avoid excessive numerical dissipation during wave propagation. All of these factors will significantly increase the computational costs, resulting in the conventional CFD approaches being impractical for simulations of wave-structure interactions over a long duration. In this paper, a coupled potential flow and CFD model is developed to reduce the simulation cost. The model decomposes the simulation domain into far-field and near-field region. Wave propagation in the far-field region is simulated by a potential flow solver (High-Order Spectral or HOS method), while the wave-structure interactions in the near-field region are simulated by a fully nonlinear, viscous, and two-phase CFD solver (Star-CCM+). A forcing zone is distributed between the two regions to blend the computational outputs from the potential flow into the CFD solvers. The coupling algorithm has been developed to improve the accuracy and efficiency. The coupled solver is applied to simulate two cases, namely regular wave propagation, and regular wave interaction with a vertical cylinder. Finally, a simulation of a 3D wave encountering an FPSO (Floating Production Storage and Offloading) is presented.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. Varghese ◽  
O. Shramkova ◽  
P. Minard ◽  
L. Blondé ◽  
V. Drazic ◽  
...  

AbstractIn this paper, we report the experimental and numerical investigation of plane wave diffraction by an all-dielectric dual-material cuboid. Edge diffraction by a cuboid leads to the generation of a narrow, high intensity beam in the near-field region called a photonic jet. We examine the dependence of the jet behavior and orientation on the materials and dimensions of constitutive parts in the microwave frequency domain. The possibility to shift and deviate the resultant microwave jet in the near-field region of such a structure depending on the size of constitutive parts is demonstrated numerically. Experimentally, we observe a shift in the spatial position of the jet. The experimental asymmetric electric field profile observed in the far-field region is attributed to the input of multiple edge waves generated by the dual-material cuboid. The presented results may be scaled at different frequency bands such as optical frequencies for designing nanostructures enabling the focusing and deviation functionality and creation of new optical devices which would satisfy the needs of emerging nanophotonic applications.


2001 ◽  
Vol 11 (04) ◽  
pp. 565-599 ◽  
Author(s):  
CRISTIAN A. COCLICI ◽  
WOLFGANG L. WENDLAND

We analyze a nonoverlapping domain decomposition method for the treatment of two-dimensional compressible viscous flows around airfoils. Since at some distance to the given profile the inertial forces are strongly dominant, there the viscosity effects are neglected and the flow is assumed to be inviscid. Accordingly, we consider a decomposition of the original flow field into a bounded computational domain (near field) and a complementary outer region (far field). The compressible Navier–Stokes equations are used close to the profile and are coupled with the linearized Euler equations in the far field by appropriate transmission conditions, according to the physical properties and the mathematical type of the corresponding partial differential equations. We present some results of flow around the NACA0012 airfoil and develop an a posteriori analysis of the approximate solution, showing that conservation of mass, momentum and energy are asymptotically attained with the linear model in the far field.


Author(s):  
N. A. Khilo ◽  
P. I. Ropot ◽  
P. K. Petrov ◽  
V. N. Belyi

The combination in an optical scheme of rather different elements such as axicons and spherical lenses allows forming light fields that differ by a variety of properties. The simplest example of such a scheme consists of an axicon and a spherical lens spatially separated from it. Though this scheme was investigated earlier, the region of so-called secondary focusing located behind the well-known annular focus has not been studied yet. In this paper, the analytical and numerical analysis of a light field in the region of secondary focusing is conducted. The boundaries of this region are determined, and the longitudinal and transverse distribution of the light intensity is calculated. It is shown that the near field region of secondary focusing is formed in the regime of abrupt autofocusing of the annular field. It is established that in a general case the transverse intensity distribution in the far field region is a superposition of an annular field and an oscillating axialtype field. The distance between the axicon and the lens is determined when the annular component of the field practically disappears. It is shown that in this case the light field in the region of the secondary focusing is a locally Bessel light beam. The peculiarity of this beam is that its cone angle depends on the longitudinal component, namely, decreases in inverse proportion while the distance z increases. The important feature of such z-dependent Bessel beams is the absence of their transformation into annular fields, as it occurs for ordinary Bessel or Bessel-Gaussian beams in the far field region. This opens the prospect for application of z-dependent Bessel beams for optical communication in free space and remote probing, which is why such beams are perspective for application in different systems of remote probing.


Author(s):  
Pankaj Kumar Raushan ◽  
Santosh Kumar Singh ◽  
Koustuv Debnath

The investigation presents the estimate of the degree of deviation from the isotropic turbulence in terms of Reynolds stress tensor for grid generated turbulence under the influence of bottom boundary. The turbulence triangle, Eigen values, and the invariant functions are presented at near and far field regions of the grids with different solidity ratio. In addition, the work also deals with the analysis based on third-order moments of the velocity fluctuations and the ratio of momentum flux to the turbulent kinetic energy in the frequency domain. The Reynolds stress anisotropy exposes that the anisotropic invariant maps possess a closed looping trend in the near field region and an open looping trend in the far-field region of the grid. Further, to describe the physical behaviour of the velocity time-series of random fluctuating components in the stream-wise directions, the probability distribution function are estimated and interpreted.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7199
Author(s):  
Woobin Kim ◽  
Hyeong-Rae Im ◽  
Yeong-Hoon Noh ◽  
Ic-Pyo Hong ◽  
Hyun-Sung Tae ◽  
...  

Near-field to far-field transformation (NFFFT) is a frequently-used method in antenna and radar cross section (RCS) measurements for various applications. For weapon systems, most measurements are captured in the near-field area in an anechoic chamber, considering the security requirements for the design process and high spatial costs of far-field measurements. As the theoretical RCS value is the power ratio of the scattered wave to the incident wave in the far-field region, a scattered wave measured in the near-field region needs to be converted into field values in the far-field region. Therefore, this paper proposes a near-field to far-field transformation algorithm based on spherical wave expansion for application in near-field RCS measurement systems. If the distance and angular coordinates of each measurement point are known, the spherical wave functions in an orthogonal relationship can be calculated. If each weight is assumed to be unknown, a system of linear equations as numerous as the number of samples measured in the near electric field can be generated. In this system of linear equations, each weight value can be calculated using the iterative least squares QR-factorization method. Based on this theory, the validity of the proposed NFFFT is verified for several scatterer types, frequencies and measurement distances.


2021 ◽  
Author(s):  
Yali Zhang ◽  
Haihua Xu ◽  
Harrif Santo ◽  
Kie Hian Chua ◽  
Yun Zhi Law ◽  
...  

Abstract The interaction between two side-by-side floating vessels has been a subject of interest in recent years due floating liquefied natural gas (FLNG) developments. The safety and operability of these facilities are affected by the free-surface elevation in the narrow gap between the two vessels as well as the relative motions between the vessels. It is common practice in the industry to use potential flow models to estimate the free-surface responses in the gap under various wave conditions. However, it is well-known that any potential flow models require calibration of viscous damping, and model tests are carried out to provide a platform to calibrate the potential flow models. To improve beyond the potential flow models, Computational Fluid Dynamics (CFD) models will be required. However, the large computational efforts required render the conventional CFD approaches impractical for simulations of wave-structure interactions over a long duration. In this paper, a developed coupled solver between potential flow and Computational Fluid Dynamics (CFD) model is presented. The potential flow model is based on High-Order Spectral method (HOS), while the CFD model is based on fully nonlinear, viscous and two phase StarCCM+ solver. The coupling is achieved using a forcing zone to blend the outputs from the HOS into the StarCCM+ solver. Thus, the efficient nonlinear long time simulation of arbitrary input wave spectrum by HOS can be transferred to the CFD domain, which can reduce the computational domain and simulation time. In this paper, we make reference to the model experiments conducted by Chua et al. (2018), which consist of two identical side-by-side barges of 280 m (length) × 46 m (breadth) × 16.5 m (draught) tested in regular and irregular wave conditions. Our intention is to numerically reproduce the irregular wave conditions and the resulting barge-barge interactions. We first simulate the actual irregular wave conditions based on wave elevations measured by the wave probes using the HOS solver. The outputs are subsequently transferred to the CFD solver through a forcing zone in a 2D computational domain for comparison of the irregular wave conditions without the barges present. Subsequently, a 3D computational domain is set up in the CFD with fixed side-by-side barges modelled, and the interaction under irregular waves is simulated and compared with the experiments. We will demonstrate the applicability of the HOS-StarCCM+ coupling tool in terms of accuracy, efficiency as well as verification and validation of the results.


Author(s):  
M. Behbahani-Nejad ◽  
N. C. Perkins

Abstract This paper analyzes the coupled nonlinear tangential-normal waves that propagate along underwater cable suspensions. Taken with the recently developed linear theory governing the in-plane structural waves (3) and an analysis of nonlinear out-of-plane waves for submerged cables (2), this investigation contributes further understanding toward a nonlinear three-dimensional theory for wave propagation along fluid loaded cables. The nonlinearities present in the in-plane model render the cable/fluid model intractable by exact analytical methods. A numerical solution is pursued in this study using finite difference algorithms. To this end, an infinite cable domain is divided to two sub domains, namely an interior (finite computational) domain and exterior (infinite far field) domain. Closed-form solutions for the approximate linear theory are employed for the far field in constructing nonreflecting boundary conditions for the computational domain. Numerical results highlight the governing role of nonlinear hydrodynamic drag for underwater cable suspentions.


1987 ◽  
Vol 183 ◽  
pp. 439-450 ◽  
Author(s):  
J. C. Appleby ◽  
D. G. Crighton

We consider the radiation of internal gravity waves from a spherical body oscillating vertically in a stratified incompressible fluid. A near-field solution (under the Boussinesq approximation) is obtained by separation of variables in an elliptic problem, followed by analytic continuation to the frequencies ω < N of internal wave radiation. Matched expansions are used to relate this solution to a far-field solution in which non-Boussinesq terms are retained. In the outer near field there are parallel conical wavefronts between characteristic cones tangent to the body, but with a wavelength found to be shorter than that for oscillations of a circular cylinder. It is also found that there are caustic pressure singularities above and below the body where the characteristics intersect. Far from the source, non-Boussinesq effects cause a diffraction of energy out of the cones. The far-field wave-fronts are hyperboloidal, with horizontal axes. The case of horizontal oscillations of the sphere is also examined and is shown to give rise to the same basic wave structure.The related problem of a pulsating sphere is then considered, and it is concluded that certain features of the wave pattern, including the caustic singularities near the source, are common to a more general class of oscillating sources.


Sign in / Sign up

Export Citation Format

Share Document