Upgrade and Life Extension of 4 × 110 MW Units: A Case Study

Author(s):  
Nynar Ayodhi ◽  
Y. Radhakrishnamurthy

Achieving rated capacity and economical operation of existing thermal power plants are vital issues for utilities. Plants nearing their design life are likely to show declining trend in availability as well as increasing trend in operation and maintenance costs due to ageing. Constraints in system adequacy, decreasing trend in efficiency and poor reliability are key issues to be addressed while planning life extension. 4×110 MW power plant located in southern part of India has been taken up for renovation and modernization. Pressure parts failures mainly accounted for the reduced availability of the units. The exit gas temperature in boiler was on the higher side leading to operation of the units with reduced efficiency. Change in fuel quality over the years as compared to what has been considered during design was a constraint in achieving rated capacity. The poor heat rate of turbine necessitated incorporation of the state-of-art design to achieve better heat rate. Improvements required in control and instrumentation system were also addressed in the renovation and modernization. Improvements in plant load factor, availability and unit heat rate could be achieved in the two units where renovation and modernization has been completed. The details of the renovation and modernization of these units are discussed in this paper.

Author(s):  
F L Carvalho ◽  
F H D Conradie ◽  
H Kuerten ◽  
F J McDyer

The paper examines the variability of key parameters in the operation of ten thermal power plants in various commercial grid environments with a view to assessing the viability of ‘on-demand’ plant performance monitoring for heat rate declaration. The plants of various types are limited to coal- and oil-fired units in the capacity range of 305–690 MW generated output. The paper illustrates the influence of control system configuration on effective and flexible power plant management. The analysis of variability indicates that there is a reasonable probability of achieving adequately stable operating periods within the normal operating envelope of grid dispatch instructions when thermal performance monitoring and display can be undertaken with a high confidence level. The levels of variability in fuel quality, which were measured during nominally constant levels of fuel input and generated output, range from about +1 per cent for oil-fired plants to about ±5 per cent for coal-fired power plants. The implications of adopting on-line monitoring of unit heat rate as an input to the generation ordering and unit commitment process are potentially significant cost and energy conservation benefits for utilities having a high proportion of coal- and oil-fired generation.


Author(s):  
D. D. Adhikary ◽  
G. K. Bose ◽  
S. Chattopadhyay ◽  
D. Bose ◽  
S. Mitra

Author(s):  
I.A. Volchyn ◽  
O.M. Kolomiets ◽  
S.V. Mezin ◽  
A.O. Yasynetskyi

The need to reduce emissions of pollutants, in particular nitrogen oxides, as required by regulations in Ukraine, requires the use of modern technologies and methods for waste gas treatment at industrial enterprises. This is especially true of thermal power plants, which are powerful sources of nitrogen oxide emissions. The technological part of the wet or semi-dry method of purification is the area for the oxidation of nitrogen oxides to obtain easily soluble compounds. The paper presents the results of a study of the process of ozone oxidation of nitrogen oxides in a chemical reactor. Data for the analysis of the process were obtained by performing physical experiments on a laboratory installation and related calculations on a mathematical model. Studies of the oxidation process have shown that the required amount of ozone depends not only on the content of nitrogen monoxide, but also on the content of nitrogen dioxide. The process of conversion of nitrogen monoxide to a satisfactory level occurs at the initial value of the molar ratio of ozone to nitrogen monoxide in the range of 1.5…2. The conversion efficiency of nitrogen monoxide reaches 90% at a gas temperature less than 100 °C. To achieve high conversion efficiency at gas temperatures above 100 °C, it is necessary to increase the initial ozone content when the molar ratio exceeds 2. The analysis shows that the conversion efficiency of nitric oxide largely depends on the residence time of the gas mixture in the reaction zone. Due to lack of time under certain conditions, the efficiency decreases by approximately 46%. To increase it, it is necessary to accelerate the rate of oxidation reactions due to better mixing of gases by turbulence of the flow in the oxidizing reactor. Bibl. 6, Fig. 6, Tab. 3.


Author(s):  
Komandur S. Sunder Raj

The objectives of an effective power plant performance monitoring program are several-fold. They include: (a) assessing the overall condition of the plant through use of parameters such as output and heat rate (b) monitoring the health of individual components such as the steam generator, turbine-generator, feedwater heaters, moisture separators/reheaters (nuclear), condenser, cooling towers, pumps, etc. (c) using the results of the program to diagnose the causes for deviations in performance (d) quantifying the performance losses (e) taking timely and cost-effective corrective actions (f) using feedback techniques and incorporating lessons learned to institute preventive actions and, (g) optimizing performance. For the plant owner, the ultimate goals are improved plant availability and reliability and reduced cost of generation. The ability to succeed depends upon a number of factors such as cost, commitment, resources, performance monitoring tools, instrumentation, training, etc. Using a case study, this paper discusses diagnostic techniques that might aid power plants in improving their performance, reliability and availability. These techniques include performance parameters, supporting/refuting matrices, logic trees and decision trees for the overall plant as well as for individual components.


2018 ◽  
Vol 245 ◽  
pp. 07014 ◽  
Author(s):  
Evgeny Ibragimov ◽  
Sergei Cherkasov

The article presents data on the calculated values of improving the efficiency of fuel use at the thermal power plant as a result of the introduction of a technical solution for cooling the flue gases of boilers to the lowest possible temperature under the conditions of safe operation of reinforced concrete and brick chimneys with a constant value of the flue gas temperature, when changing the operating mode of the boiler.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zhongfu Tan ◽  
Liwei Ju ◽  
Xiaobao Yu ◽  
Huijuan Zhang ◽  
Chao Yu

In order to reduce thermal power generation cost and improve its market competitiveness, considering fuel quality, cost, creditworthiness, and sustainable development capacity factors, this paper established the evaluation system for coal supplier selection of thermal power and put forward the coal supplier selection strategies for thermal power based on integrated empowering and ideal matter-element extension models. On the one hand, the integrated empowering model can overcome the limitations of subjective and objective methods to determine weights, better balance subjective, and objective information. On the other hand, since the evaluation results of the traditional element extension model may fall into the same class and only get part of the order results, in order to overcome this shortcoming, the idealistic matter-element extension model is constructed. It selects the ideal positive and negative matter-elements classical field and uses the closeness degree to replace traditional maximum degree of membership criterion and calculates the positive or negative distance between the matter-element to be evaluated and the ideal matter-element; then it can get the full order results of the evaluation schemes. Simulated and compared with the TOPSIS method, Romania selection method, and PROMETHEE method, numerical example results show that the method put forward by this paper is effective and reliable.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4371-4376
Author(s):  
SUNGHO CHANG ◽  
GEEWOOK SONG ◽  
BUMSHIN KIM ◽  
JUNGSEB HYUN ◽  
JEONGSOO HA

The operational mode of thermal power plants has been changed from base load to duty cycle. From the changeover, fossil power plants cannot avoid frequent thermal transient states, for example, start up and stop, which results in thermal fatigue damage at the heavy section components. The rotor is the highest capital cost component in a steam turbine and requires long outage for replacing with a new one. For an optimized power plant operational life, inspection management of the rotor is necessary. It is known in general that the start-up and shutdown operations greatly affect the steam turbine life. The start-up operational condition is especially severe because of the rapid temperature and rotational speed increase, which causes damage and reduction of life of the main components life of the steam turbine. The start-up stress of a rotor which is directly related to life is composed of thermal and rotational stresses. The thermal stress is due to the variation of steam flow temperature and rotational stress is due to the rotational speed of the turbine. In this paper, the analysis method for the start-up stress of a rotor is proposed, which considers simultaneously temperature and rotational speed transition, and includes a case study regarding a 500MW fossil power plant steam turbine rotor. Also, the method of quantitative damage estimation for fatigue-creep damage to operational conditions, is described. The method can be applied to find weak points for fatigue-creep damage. Using the method, total life consumption can be obtained, and can be also be used for determining future operational modes and life extension of old fossil power units.


Sign in / Sign up

Export Citation Format

Share Document