Experimental Research on Performance of Heat Transfer and Pressure Drop for Primary Surface Recuperator With Mini Channels

Author(s):  
Hugen Ma ◽  
Hui Gao ◽  
Wenjing Tu

Based on the single blow technique, experimental research was conducted for the performance of heat transfer and flow drop for six test cores with cross corrugated (CC) or corrugated undulated (CU) primary surfaces for different geometries. After the mathematical model was established for heat transfer under the condition of single blow, a matching numerical solution was obtained for different NTU. The correlations of hear transfer factor j and friction factor f were obtained for three types of cross corrugated primary surfaces (crossed angle 45∼75°) with a range of Re = 120∼800 and three types of corrugated undulated primary surfaces (crossed angle 52.5∼67.5°) with a range of Re = 200∼1200. Hydraulic diameters of all heat transfer surfaces are from 1.2∼1.48mm. Analysis on the flow and heat transfer for cross corrugated and corrugated undulated primary surfaces was made based on the comprehensive evaluating factor j/f. The experimental results were compared to references with good consistency. The regressive errors of correlations were less than 16%.

2013 ◽  
Vol 721 ◽  
pp. 456-460
Author(s):  
Yi Bing Liu

Having fully considered the influence of gas-liquid interfacial friction on the heat transfer characteristics of heat pipe within the channel, the mathematical model of the flow and heat transfer process in the Rectangular Micro-groove flat heat pipe is established. The simulation is performed by using thermal analysis software ANSYS. The iterative computation values of the center point temperature of the heat pipe surface being compared with the simulation results, the error is only 5.27% and the two are basically the same values, which shows that the mathematical model has a guiding significance on the analysis of heat pipe theory.


2012 ◽  
Vol 9 (1) ◽  
pp. 131-135
Author(s):  
M.A. Pakhomov

The paper presents the results of modeling the dynamics of flow, friction and heat transfer in a descending gas-liquid flow in the pipe. The mathematical model is based on the use of the Eulerian description for both phases. The effect of a change in the degree of dispersion of the gas phase at the input, flow rate, initial liquid temperature and its friction and heat transfer rate in a two-phase flow. Addition of the gas phase causes an increase in heat transfer and friction on the wall, and these effects become more noticeable with increasing gas content and bubble diameter.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.


Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


Author(s):  
Mei Zheng ◽  
Wei Dong ◽  
Zhiqiang Guo ◽  
Guilin Lei

The runback water flow and heat transfer on the surface of aircraft components has an important influence on the design of anti-icing system. The aim of this paper is to investigate the water flow characteristics on anti-icing surface using numerical method. The runback water flow on the anti-icing surface, which is caused by the impinging supercooled droplets from the clouds, is driven by the aerodynamic shear forces and the pressure gradient around the components. This is a complex model of flow and heat transfer that considers flow field, super-cooled droplets impingement and runback water flow simultaneously. In this case of gas-liquid two phase flow, the Volume-of-Fluid (VOF) method is very suitable for the solution of thin liquid film flow so that it is applied to simulate the runback water flow on anti-icing surfaces in this paper. Meanwhile, the heat and mass transfer of the runback water flow are considered in the calculation using the User-Defined Functions (UDFs) in ANASYS FLUENT. The verification is conducted by the comparison with the results of the experimental measurement and the mathematical model calculation. The effect of the airflow velocity and contact angle on the water flow are also considered in the numerical simulation.


2020 ◽  
Vol 18 (4) ◽  
pp. 578-585
Author(s):  
Madina Shavdinova ◽  
Konstantin Aronson ◽  
Nina Borissova

The condensing unit is one of the most important elements of the steam turbine of a combined heat and power plant. Defects in elements of the condensing unit lead to disturbances in the steam turbine operation, its failures and breakdowns, as well as efficiency losses of the plant. Therefore, the operating personnel need to know the cause of the malfunction and to correct it immediately. There are no diagnostic models of condensers in the Republic of Kazakhstan at the moment. In this regard, a mathematical model of a condenser based on the methodology of Kaluga Turbine Plant (KTP) has been developed. The mathematical model makes it possible to change the input parameters, plot dependency diagrams, and calculate the plant efficiency indicators. The mathematical model of the condenser can be used to research ways for the improvement of the condensing unit efficiency, for diagnostic purposes of the equipment condition, for the energy audit conduction of the plant, and in the training when performing virtual laboratory research. Using static data processing by linear regression method we obtain that the KTP methodology of condenser calculation is fair at cooling water temperature from 20 °C to 24 °C, but at cooling water temperature from 20 °C to 28 °C, the methodology of JSC "All-Russia Thermal Engineering Institute" (JSC "VTI") is used. One of the ways to increase the condenser efficiency has been proposed. It is the heat transfer augmentation with riffling annular grooves on tubes. This method increases the heat transfer coefficient by 2%, reduces the water subcooling of the heating steam by 0.9 °C, and decreases the cooling area by 2%.


Sign in / Sign up

Export Citation Format

Share Document