Renewable Energy Systems for Demand-Side Management in Industrial Facilities

2021 ◽  
Author(s):  
Joseph Elio ◽  
Patrick Phelan ◽  
Rene Villalobos ◽  
Ryan J. Milcarek

Abstract Due to high energy usage and power demand in industrial facilities, demand-side management (DSM) can simultaneously yield substantial energy cost savings for the facility and reduce the load on the power grid. There are many means of DSM, the most common being peak clipping, which is easily done with renewable energy systems and other power-generating devices. In this work, renewable energy systems (RESs) are critically reviewed and compared based on their application to industrial demand-side management (IDSM). Specifically, the RESs reviewed herein include photovoltaics, wind turbines, geothermal, and hybrid renewable energy systems. These devices are introduced, followed by a discussion of their advantages, disadvantages, and feasibility for use in IDSM. Most importantly, the reduction in the carbon footprint of power generation plants resulting from the use of RESs for IDSM is investigated. Comparisons are made based upon rated power, capital costs, O&M costs, levelized cost of energy, and the feasibility for use in industrial facilities. Using the values in the cost comparisons, the levelized cost of energy (LCOE) is derived for each device and used in a techno-economic analysis comparing the cost savings for the different RESs for a hypothetical plant.


2021 ◽  
Author(s):  
Taskin Jamal ◽  
Prof Christopher J. Fogwill ◽  
Ashraf Hossain Bhuiyan

Abstract Beneficiaries prefer renewable energy-based systems over grid-connected electricity. The cost of energy is viewed as the most influential factor while choosing renewable energy systems. Beneficiaries chose to stay linked with renewa­ble energy systems even when they received grid-connected electricity at a lower tariff.Net-metering and feed-in tariff mechanisms, as well as tax cuts and subsidies for renewable energy projects, could be the catalyst for fostering greater uptake of renewables in the electricity generation mix.



Author(s):  
Christine Lee ◽  
Andy Walker ◽  
Moncef Krarti

An hourly optimization tool is developed to select and size renewable energy (RE) systems to meet the energy needs for various federal facilities. The optimization is based on life cost analysis of various RE technologies including wind and PV systems. The developed hourly optimization tool is used to evaluate the cost-effectiveness of RE technologies using complex energy and demand charges such time-of-use (TOU) rates. The paper compares results obtained using hourly analysis instead of annual based calculations to optimize the sizing of RE systems for residential, commercial, and industrial facilities in three representative US climates.



Author(s):  
Susan W. Stewart ◽  
Lucas T. Witmer

Every location on Earth has its own unique set of natural resources to draw upon for sustainable energy production. As these resources are generally of an intermittent nature, hybrid systems will be necessary in many situations to achieve economical energy independence while meeting our inconsistent demands for electricity with minimal or no energy storage. Wind and solar resources often have complimentary attributes that combined can more closely match energy load requirements. This match can be customized for optimum economy by adjusting the orientation and design of the PV system as well as the rotor length and generator size of the wind turbine system. Different load requirements and electricity rate structures require a different design approach in order to achieve optimum cost savings. Using the Penn State SURFRAD wind speed and solar radiation data set the design process for solar-wind hybrid renewable energy systems is explored for the case of a grid-tied residential scale application with a time of use electricity rate structure.



Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 39
Author(s):  
Mariam Gómez Sánchez ◽  
Yunesky Masip Macia ◽  
Alejandro Fernández Gil ◽  
Carlos Castro ◽  
Suleivys M. Nuñez González ◽  
...  

The generation of energy from renewable sources is a fundamental aspect for the sustainable development of society, and several energy sources such as solar, biomass, biogas, and wind must be used to the maximum to meet existing needs. In Chile, there are villages that are off-grid. A real case study is presented in this research. To meet the needs of this village we have proposed a mathematical optimization model using a CPLEX optimizer to generate the necessary energy power while minimizing the cost of energy (COE). In this study, different scenarios have been evaluated with respect to the existing energy availabilities, for example, in different periods of the year, demonstrated in terms of economic costs, the viability of resources such as biomass and biogas, and the viability of the energy production of wind power given the associated high costs. Finally, the effect of the use of renewable energy in consideration of CO2 emissions is studied in our research.



Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6627
Author(s):  
Vijayaraja Loganathan ◽  
Ganesh Kumar Srinivasan ◽  
Marco Rivera

In this paper, a ‘k’-state inverter producing a higher number of voltage levels was designed, and we studied the inverter’s working. Further, a tri-state inverter was derived from the ‘k’-state inverter, which could build a maximum number of output voltage levels with the requirement of fewer components, thereby reducing the cost and size. A single Tri-state architecture generates three direct current (D.C.) voltage levels; therefore, cascading five tri-state architectures can generate 242 levels of DC voltages. Further, the inversion is done via the H bridge, which leads to 485 levels of the output voltage. Algorithms to design the amplitude of voltage sources and the generation of pulses are discussed in this paper. The proposed tri-state inverter takes a significant role in advancing renewable energy systems in utilizing inverter technology. A simulation study validated the operation of the proposed inverter. Moreover, an experimental setup was built for a single-phase 485-level inverter, and the structure’s performance was verified through the experimental results.



Author(s):  
Bahtiyar Dursun ◽  
Ercan Aykut

This paper presents a techno-economic analysis of hybrid renewable energy systems to supply the electrical load requirements of the nursing home located in Istanbul, Turkey. The standalone hybrid renewable energy systems (Photovoltaic (PV)/wind/fuel cell/electrolyzer, PV/fuel cell/electrolyzer, and wind/fuel cell/electrolyzer, etc.) considered in the analysis were comprised of different combinations of PV panels, fuel cells, and wind turbines supplemented with hydrogen storage. In this study, the Hybrid Optimization of Multiple Energy Resources (HOMER) software is used as the assessment tool to determine the optimal configuration of hybrid renewable energy systems taking total net present cost and cost of energy into consideration. As a result, it is determined that the optimal system configuration of standalone wind/PV/fuel cell/electrolyzer hybrid renewable energy systems with the lowest total net present cost consists of 30 kW PV panel, 20 kW wind turbine, 20 kW fuel cell, 20 kW power converter, 50 kW electrolyzer, 20 kW rectifier, and 100 kg hydrogen tank. Besides, the net present cost and cost of energy of the optimum configuration are calculated to be $607,298 and $1.306/kWh, respectively. The system is considered as completely renewable. When wind speed and solar radiation values increase, then the cost of energy decrease about $0.979/kWh.



2020 ◽  
Vol 173 ◽  
pp. 02001
Author(s):  
Paul Arévalo ◽  
Darío Benavides ◽  
Juan L. Espinoza ◽  
Francisco Jurado

The integration of renewable energy is transcendental for sustainable development. This article analyses a hybrid grid-connected system composed of renewable energy technologies (photovoltaichydrokinetic), where several scenarios for energy management are proposed. They include a battery system as energy storage and a system without storage but with resale fee to grid, with the aim of determining the best economic and environmental balance. The results show that, by having a (PV-HKT-GRID) system with energy storage and no resale fee to the grid, the Net Present Cost (NPC) is increased by USD $ 132, 760 and the Cost of Energy (COE) decreases $ 0.013/kWh when compared to the grid. In addition, the same hybrid system without energy storage and no resale fee to grid, presents an energy cost savings of $ 0.043/kWh, and an additional cost of USD $ 43, 630. Finally, if a grid resale rate is included in the renewable hybrid system, then the difference is noticeable, the savings in the Cost of Energy is $ 0.073/kWh and presents a saving in the NPC of USD $ 39, 930. In all cases, CO2 emissions have been avoided.



Sign in / Sign up

Export Citation Format

Share Document