Energy Saving Assessment of Triple-Hybrid Vapor Absorption Building Cooling System Under Hot-Dry Climate

2021 ◽  
Author(s):  
Gaurav Singh ◽  
Ranjan Das

Abstract Thermally driven vapor absorption-based air-conditioning systems possess many advantages over the compression based systems. However, intermittent availability of input resources affects the operation of these absorption systems which causes discontinuous working. This study aims at examining the electrical and thermodynamic performance of a triple-hybrid vapor absorption-assisted air-conditioning system against a conventional system with the aid of EnergyPlus simulations for a small office building. The outside weather is subjected to hot-dry climatic condition. The heat input source includes biomass and solar energy-based resources. Auxiliary heat input is also used to ensure smooth operation. The performance of the absorption system is assessed at different generator temperature (70 °C–80 °C) and solar collector area (400 m2–500 m2). The results show that, by using absorption-based systems, a maximum of 34.1% electrical energy savings can be ensured at 500 m2 collector area with 70 °C generator temperature. The coefficient of performance of the absorption system escalates from 0.50 to 0.52 by increasing the generator temperature form 70 °C to 80 °C. Under the condition of 70 °C generator temperature and 500 m2 collector area, the absorption system can be made fully renewable energy dependent.

2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 507-517
Author(s):  
Balaji Kumar ◽  
Iniyan Selvarasan ◽  
Gurubalan Annadurai ◽  
Senthilkumar Ramalingam

Energy analysis plays a vital role in the industry due to the use of electrical energy, global warming, and economy crises. This paper describes the waste heat available in the exhaust of the steam turbine and beneficial use of the waste heat. The sugar industry steam turbine exhaust carries enthalpy of steam at 2500 kJ/kg, this thermal energy can be put into beneficial use as the heat source to the vapor absorption refrigeration system to compensate energy required for DC thyrist motor, and this can also be used for cold storage. Energy savings in terms of cost and fuels are calculated. Investigation on the heat and mass transfer in evaporator has been carried out in vapor absorption system by varying the operating parameter. Less circulation ratio is required to increase the coefficient of performance. The inlet temperature of the coolant should be less for achieving higher coefficient of performance.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Gaurav Singh ◽  
Ranjan Das

A building energy simulation study is carried out to analyze the performance of a triple-hybrid single-effect vapor absorption cooling system (VACS) operated by solar, natural gas, and auxiliary electricity-based cogeneration. A high capacity small office building subjected to different climatic conditions is considered. The system is designed to continuously maintain a specified building comfort level throughout the year under diverse environmental conditions. Simulations are done at different generator temperatures to investigate the performance in terms of total annual electric energy consumption, heating energy, and the coefficient of performance (COP). The performance of the present VACS is compared with the conventional compression-based system, which demonstrates the electric energy and cost saving potentials of the proposed VACS. Simulation outcomes are well-validated against benchmark data from national renewable energy laboratory and energy conservation building code. Interestingly, it is found that beyond a certain collector area, surplus energy savings can be acquired with the present triple-hybrid VACS as compared to the compression-based cooling. Results also show that COP of the simulated system is in line with experimental values available in the literature. Finally, recommendations are given to operate the complete system on solar and biomass resources, which provide encouraging opportunity for agriculture-based countries.


2018 ◽  
Vol 156 ◽  
pp. 03040 ◽  
Author(s):  
Juwari Purwo Sutikno ◽  
Serlya Aldina ◽  
Novita Sari ◽  
Renanto Handogo

The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP) for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids) variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy) and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.


2019 ◽  
pp. 01-13
Author(s):  
Jani DB

Desiccant-based dehumidification and air conditioning systems are considered as an energy efficient alternative to traditional vapor compression based air-conditioning systems for green building cooling technology especially in tropical hot and humid ambient climates. It is a novel green cooling technology that makes use of low-grade heat for building air conditioning. It is seen that the desiccant based dehumidification and cooling can efficiently provide comfort conditions in subtropical and especially hot and humid tropical climates. The desiccant integrated novel cooling system has a significant higher coefficient of performance compared to the conventional vapor compression system resulting to substantial electrical energy savings during the summer season by use of renewable solar energy, which also resulted in to major reduction in CO2 emissions. Therefore, these results demonstrate that there is a good potential in desiccant-based dehumidification and cooling system for energy and carbon savings while carry out building air-conditioning. Through a literature review, the feasibility of the desiccant assisted air conditioning in hot and humid climatic conditions is proven and the advantages it can offer in terms energy and cost savings are underscored. Keywords: Air-conditioning; Desiccant cooling; Dehumidification; Green cooling; Thermal comfort


2012 ◽  
Vol 16 (3) ◽  
pp. 131
Author(s):  
Didik Ariwibowo

Didik Ariwibowo, in this paper explain that energy audit activities conducted through several phases, namely: the initial audit, detailed audit, analysis of energy savings opportunities, and the proposed energy savings. Total energy consumed consists of electrical energy, fuel, and materials in this case is water. Electrical energy consumption data obtained from payment of electricity accounts for a year while consumption of fuel and water obtained from the payment of material procurement. From the calculation data, IKE hotels accounted for 420.867 kWh/m2.tahun, while the IKE standards for the hotel is 300 kWh/m2.tahun. Thus, IKE hotel included categorized wasteful in energy usage. The largest energy consumption on electric energy consumption. Largest electric energy consumption is on the air conditioning (AC-air conditioning) that is equal to 71.3%, and lighting and electrical equipment at 27.28%, and hot water supply system by 4.44%. Electrical energy consumption in AC looks very big. Ministry of Energy and Mineral Resources of the statutes, the profile of energy use by air conditioning at the hotel by 48.5%. With these considerations in the AC target for audit detail as the next phase of activity. The results of a detailed audit analysis to find an air conditioning system energy savings opportunities in pumping systems. Recommendations on these savings is the integration of automation on the pumping system and fan coil units (FCU). The principle of energy conservation in the pumping system is by installing variable speed drives (VSD) pump drive motor to adjust speed according to load on the FCU. Load variations FCU provide input on the VSD pumps to match. Adaptation is predicted pump can save electricity consumption up to 65.7%. Keywords: energy audit, IKE, AC


2020 ◽  
Vol 10 (10) ◽  
pp. 3622 ◽  
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

The electrical power consumption of refrigeration equipment leads to a significant influence on the supply network, especially on the hottest days during the cooling season (and this is besides the conventional electricity problem in Iraq). The aim of this work is to investigate the energy performance of a solar-driven air-conditioning system utilizing absorption technology under climate in Baghdad, Iraq. The solar fraction and the thermal performance of the solar air-conditioning system were analyzed for various months in the cooling season. It was found that the system operating in August shows the best monthly average solar fraction (of 59.4%) and coefficient of performance (COP) (of 0.52) due to the high solar potential in this month. Moreover, the seasonal integrated collector efficiency was 54%, providing a seasonal solar fraction of 58%, and the COP of the absorption chiller was 0.44, which was in limit, as reported in the literature for similar systems. A detailed parametric analysis was carried out to evaluate the thermal performance of the system and analyses, and the effect of design variables on the solar fraction of the system during the cooling season.


Author(s):  
Artur Rusowicz ◽  
Adam Ruciński ◽  
Rafał Laskowski

One of main issues concerning server room operation is appropriate cooling of electronic modules to prevent excessive heat generation resulting in their damage. Since high cooling powers are required, precision air conditioning systems are used that are specially designed for cooling server and equipment rooms, server cabinets, etc. These devices require very large energy supplies. The paper proposes an upgrade of a cooling system for three server rooms in which refrigeration equipment with a cooling power of 1.873 MW is installed. The average actual cooling power demand is 890 kW, and some units work as a standby. Thir-eight direct-evaporation air-conditioning cabinets are installed. The refrigerant is R407C. The devices have been operated for 14 years; therefore, the refrigeration equipment should be replaced with modern units. The paper compares three approaches: replacing the units with similar ones based on newer technology, introducing contained aisle configurations of rack cabinets and units based on newer technology with additional EconoPhase modules. The application of free cooling was not analyzed since mounting additional heat exchangers was impossible (due to the lack of space and limited roof loading capacity). The paper provides capital and operating costs of the solutions. The introduction of up-to-date units and replacing condensers resulted in lowering the electric power demand by 16%. The simple payback time (SPBT) of this solution is 18.8 years. The energy savings achieved through the second solution (contained aisle configurations of rack cabinets) amount to 37.8%, with SPBT equal to 8.38 years. Variant III, consisting in using modern units with additional EconoPhase modules, significantly improves energy savings (48.3%) but it requires large capital expenditure, with simple payback time of 12.1 years.


2011 ◽  
Vol 19 (02) ◽  
pp. 131-140
Author(s):  
QUBO LI ◽  
DEMISS A. AMIBE ◽  
NORBERT MÜLLER

An air conditioning system using water as refrigerant (R718) that compresses water vapor with multistage stage variable speed axial compressor with intercooling between stages by water injection is considered. Four stage compression with flash intercooling resulted in 50% improvement of coefficient of performance (COP) at full load compared to conventional refrigerants like R134a. The energy efficiency of an air conditioning unit is specified by seasonal energy efficiency ratio (SEER). SEER is defined as the ratio of cooling output of an air conditioner measured and electrical energy consumption as per AHRI 210/240 during cooling season. The SEER is computed after determining the evaporator cooling capacity and the electrical energy demand of the compressor at each bin temperature using assumed compressor isentropic efficiency, mechanical efficiency and electrical efficiency and multiplying by the weight of each bin temperature to determine the total for the cooling season. As a result of multistage compression, best part load performance of water as a refrigerant and operation of compressor near design point at part load due to variable speed drive, 50%–60% improvement in SEER is obtained compared to the best available in the market using conventional refrigerants such as R134a with single stage compression.


Author(s):  
Sachin Sunil Mothiravally ◽  
Sachidananda Hassan Krishanmurthy

Air conditioning plays a significant role to maintain a cool atmosphere in warm conditions, However, the power consumed by the machine is higher. The commercial prevailing cooling systems are required to operate ventilation and cooling systems in buildings and in turn consumes more power. These systems apart from consuming electricity it also adds to the CO2 emissions to our environment. These energy consumption and CO2 emissions can be decreased by the assistance of energy effective frameworks to the prevailing air conditioning system. The study was conducted on a package unit of 414.2 kW by measuring the relative humidity, dry bulb, and wet bulb temperature to investigate the effect of indirect evaporative cooling on the systems COP. Also, the modelling of the package unit was done using Creo software and the analysis was carried out using ANSYS considering the flow and thermal analysis for different components of the package units. From this analysis it can be observed that by implementing the adiabatic cooling in package unit it is possible to save energy consumption. From the results it can be concluded that energy efficiency was more and the return on investment is high. Also, coefficient of performance of this machine is high and consumes less electricity and the expected energy savings is 20%.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 22
Author(s):  
Andang Widiharto ◽  
Didit Setyo Pamuji ◽  
Atik Nurul Laila ◽  
Fiki Rahmatika Salis ◽  
Luthfi Zharif ◽  
...  

<p>Air conditioning (AC) is one of the most building’s energy consumer, included in building of Engineering Physisc’s Departement, Universitas Gadjah Mada (UGM). The declining of fossil fuel reserves and the increasing effects of global warming, forcing the world to switch to renewable energy sources. This paper discusses the design of solar absorption cooling system to replace conventional AC in seven lecture halls of Engineering Physic’s Departement, UGM. There are some steps that have been done to design the solar absorption cooling, i.e. do a study of the potential availability of solar energy, calculate the cooling loads, analyze the thermodynamic process of the system, determine the type of collector to be used and calculate area of solar collector needed. The thermal coefficient of performance (COP) of the system designed was about 0.84 which could use some types of flat plate solar collector with each area corresponding to each efficiency values. </p><p><strong>Keyword</strong> : Air conditioning; global warming; solar absorption cooling; solar collector</p>


Sign in / Sign up

Export Citation Format

Share Document