Consistent Treatment of Weld Residual Stresses in Fracture Assessment

Author(s):  
P. Dong ◽  
J. K. Hong

Over the last decade, as more in-depth understanding of weld residual stresses is being achieved, particularly of their characteristic distributions in pressure vessel and piping components, the residual stress effects on stress intensities at welds are becoming better understood. In this paper, some of the important residual stress characteristics are first identified in the form of either “bending” dominated or “self-equilibrating” dominated types for girth welds. The applicability in other joint configurations in welded structures is then discussed, with a collection of validated residual stress distributions. The characterization of both “bending” and “self-equilibrating” types in residual stress distributions provides a consistent framework for stress intensity factor considerations in either fracture and fatigue assessment. The contribution of weld residual stresses to stress intensities at welds are shown to be in the form of K solutions under displacement controlled conditions. The “bending” type residual stresses provide a longer range of influence than “self-equilibrating” type in K solutions. The contribution of “self-equilibrating” type residual stresses to stress intensities is shown to be dominant when crack size is small, while the contribution of the “bending” type dominant for crack size up to a much large size with respect to wall thickness.

Author(s):  
P. Dong

Over the last decade, as more in-depth understanding of weld residual stresses is being achieved, particularly of their characteristic distributions in pressure vessel and piping components, the residual stress effects on stress intensities at welds are becoming better understood. In this paper, some of the important residual stress characteristics are first identified in the form of either “bending” dominated or “self-equilibrating” dominated types for girth welds. The applicability in other joint configurations in welded structures is then discussed, with a collection of validated residual stress distributions. The characterization of both “bending” and “self-equilibrating” types in residual stress distributions provides a consistent framework for stress intensity factor considerations in either fracture and fatigue assessment. The contribution of weld residual stresses to stress intensities at welds are shown to be in the form of K solutions under displacement controlled conditions. The “bending” type residual stresses provide a longer range of influence than “self-equilibrating” type in K solutions. The contribution of “self-equilibrating” type residual stresses to stress intensities is shown to be dominant when crack size is small, while the contribution of the “bending” type dominant for crack size up to a much large size with respect to wall thickness.


2006 ◽  
Vol 129 (3) ◽  
pp. 345-354 ◽  
Author(s):  
P. Dong

In this paper, some of the important controlling parameters governing weld residual stress distributions are presented for girth welds in pipe and vessel components, based on a large number of residual stress solutions available to date. The focus is placed upon the understanding of some of the overall characteristics in through-wall residual stress distributions and their generalization for vessel and pipe girth welds. In doing so, a unified framework for prescribing residual stress distributions is outlined for fitness-for-service assessment of vessel and pipe girth welds. The effects of various joint geometry and welding procedure parameters on through thickness residual stress distributions are also demonstrated in the order of their relative importance.


2014 ◽  
Vol 891-892 ◽  
pp. 1205-1211 ◽  
Author(s):  
Dale L. Ball ◽  
Mark A. James ◽  
Robert J. Bucci ◽  
John D. Watton ◽  
Adrian T. DeWald ◽  
...  

The fully effective utilization of large aluminum forgings in aerospace structures has been hampered in the past by inadequate understanding of, and sometimes inaccurate representation of, bulk residual stresses and their impact on both design mechanical properties and structural performance. In recent years, significant advances in both computational and experimental methods have led to vastly improved characterization of residual stresses. As a result, new design approaches which require the extraction of residual stress effects from material property data and the formal inclusion of residual stresses in the design analysis, have been enabled. In particular, the impact of residual stresses on durability and damage tolerance can now be assessed, and more importantly, accounted for at the beginning of the design cycle.


Author(s):  
P. Dong

In this paper, some of the important controlling parameters in governing weld residual stress distributions are presented for girth welds in pipe and vessel components, based on a large number of residual stress solutions available to date. The focus is placed upon the understanding of some of the overall characteristics in through-wall residual stress distributions and their generalization for vessel and pipe girth welds. In doing so, a unified framework for prescribing residual stress distributions is then outlined for fitness-for-service assessment of vessel and pipe girth welds. The effects of various joint geometry and welding procedure parameters on through thickness residual stress distributions are also demonstrated in the order of their relative importance.


Author(s):  
P. John Bouchard ◽  
Jino Mathew

The effect of residual stress on potential crack growth and fracture in welded structures is usually assessed through its contribution to the stress intensity factor (SIF) for the crack size and shape of interest. The idea of defining bounding residual SIF profiles for surface breaking circumferential cracks in pipe butt welds was presented at ASME PVP2013. The limiting profiles were based on through-thickness residual stress measurements for eight pipe girth welds. This paper presents new axial residual stress measurements made using the contour method for an Esshete 1250 stainless steel pipe girth weld. A wide variation in the through-wall distribution of axial residual stress around the circumference of the pipe is observed which has a significant effect on calculated values of SIF for postulated surface breaking circumferential cracks. Nonetheless, SIFs based on all of the new measurements (a total of 14 profiles) are comfortably bounded by the simple SIF prescriptions previously published.


2016 ◽  
Vol 258 ◽  
pp. 432-435
Author(s):  
Petr Brož

It is explained which way a welded zone integrity has to concentrate on a number of inconveniences resulting from the weld behaviour. These problems will be discussed for evaluation of fatigue and fracture. Going after the fracture assessment address, the effect of weld configuration on stress intensity factor is fixing. A pertinent input to these methods is the limit load. In the view of the prominence of residual stresses in weldments, the interpretation of combined primary and secondary stresses in fracture evaluation is most desirable to be described in great detail. The influence of residual stresses on R – ratio is given. The weldment testing methods involve the techniques for definite microstructural regions and elimination of residual stress effects on fracture toughness measuring. For FCG rate predicting, the initial residual stresses are put into numerical models and residual stress distribution is simulated, incorporating crack growth. The technique is suggested for cracks initiating within a weld, namely in tensile residual stress zone.


1982 ◽  
Vol 104 (3) ◽  
pp. 204-209 ◽  
Author(s):  
E. F. Rybicki ◽  
P. A. McGuire ◽  
E. Merrick ◽  
J. Wert

This paper addresses the question of what effect the pipe thickness has on weld residual stresses in 304 stainless steel piping. Two diameters are considered. These are nominal 4-in. and 10-in. diameters. Four pipe wall thicknesses corresponding to schedules 10, 40, 80, and 160 are examined for each pipe. The focus is on residual stress distributions on the pipe inner surface because this is a primary site for intergranular stress corrosion cracking in 304 stainless steel pipes. The trends in residual stress values are toward more compressive stresses at the pipe inner surface for thicker pipes with the same nominal diameter. Residual axial stresses for the thick 10-in. schedule 160 pipe were found to be compressive while those for the thinner schedule 80 pipe were tensile. X-ray residual stress data for a 6-in-dia schedule 160 pipe fall between the results for the 4-in. and 10-in. schedule 160 pipes and support the findings of the study.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Yao Ren ◽  
Anna Paradowska ◽  
Bin Wang ◽  
Elvin Eren ◽  
Yin Jin Janin

This research investigated the effects of global (in other words, furnace-based) and local post weld heat treatment (PWHT) on residual stress (RS) relaxation in API 5L X65 pipe girth welds. All pipe spools were fabricated using identical pipeline production procedures for manufacturing multipass narrow gap welds. Nondestructive neutron diffraction (ND) strain scanning was carried out on girth welded pipe spools and strain-free comb samples for the determination of the lattice spacing. All residual stress measurements were carried out at the KOWARI strain scanning instrument at the Australian Nuclear Science and Technology Organization (ANSTO). Residual stresses were measured on two pipe spools in as-welded condition and two pipe spools after local and furnace PWHT. Measurements were conducted through the thickness in the weld material and adjacent parent metal starting from the weld toes. Besides, three line-scans along pipe length were made 3 mm below outer surface, at pipe wall midthickness, and 3 mm above the inner surface. PWHT was carried out for stress relief; one pipe was conventionally heat treated entirely in an enclosed furnace, and the other was locally heated by a flexible ceramic heating pad. Residual stresses measured after PWHT were at exactly the same locations as those in as-welded condition. Residual stress states of the pipe spools in as-welded condition and after PWHT were compared, and the results were presented in full stress maps. Additionally, through-thickness residual stress profiles and the results of one line scan (3 mm below outer surface) were compared with the respective residual stress profiles advised in British Standard BS 7910 “Guide to methods for assessing the acceptability of flaws in metallic structures” and the UK nuclear industry's R6 procedure. The residual stress profiles in as-welded condition were similar. With the given parameters, local PWHT has effectively reduced residual stresses in the pipe spool to such a level that it prompted the thought that local PWHT can be considered a substitute for global PWHT.


2016 ◽  
Vol 725 ◽  
pp. 647-652 ◽  
Author(s):  
Yusuke Yanagisawa ◽  
Yasuhiro Kishi ◽  
Katsuhiko Sasaki

The residual stress distributions of the forgings after both water-cooling and air-cooling were measured experimentally. The residual stress occurring during the heat-treatment was also simulated considering the phase transformation and the transformation plasticity. A comparison of the experiments with the simulations showed a good agreement. These results shows that the transformation plastic strain plays an important role in the heat treatment of large forged shafts.


Author(s):  
Noel P. O’Dowd ◽  
Yuebao Lei

Tensile residual stresses, such as those generated by welding, act as crack opening stresses and can have a negative effect on the fatigue and fracture performance of a component. In this work the effect of representative residual stress distributions on the fracture behaviour of a ferritic steel has been examined using finite element analysis. A Gurson-type void growth model is used to model the effect of ductile tearing ahead of a crack. For the cases examined it is seen that a tensile residual stress field may lead to a reduction in the toughness of the material (as represented by the J-resistance curve). The observed difference in toughness can be linked to the different constraint levels in the specimens due to the introduction of the residual stress field and can be rationalised through the use of a two parameter, J–Q approach.


Sign in / Sign up

Export Citation Format

Share Document