Development of Numerical Dynamic Simulators for 3-D Full Scale Earthquake Testing Facility (Phase-2)

Author(s):  
Shinichiro Kajii ◽  
Chiaki Yasuda ◽  
Tosio Yamashita ◽  
Yukihito Okuda ◽  
Jun Hirai ◽  
...  

The largest 3-dimensional vibration test facility is planning to build in Hyogo pref. The objectives of this facility are to investigate the process of the collapsing phenomena of a full-scale structure under the earthquake. At the design stage, it’s impossible to make sure the performance without the numerical simulation. Therefore, the mathematical simulation model was accurately constructed, and the simulation was performed. This paper describes as follows. (1) The modeling method of the 3-dimensional vibration test system. (2) The verification of the modeling method based on the measured data by using the prototype test facilities. (3) The verification results based on the condition of a collapsing phenomena of the full-scale building.

Author(s):  
Shintaro Watanabe ◽  
Kazuhiko Maekawa ◽  
Yasuyuki Tanaka ◽  
Akesi Koike ◽  
Yukiharu Yamasaki

The largest 3-dimensional vibration test facility is being constructed in Japan’s Hyogo Prefecture. The objective of this facility is to assist the investigation on the process of the collapsing phenomena of a full-scale structure in an earthquake. This facility has a large size shaking table (15 m × 20 m), with a payload of 12 MN. Actuators are connected to the shaking table via 3-D links. In order to reduce the distortion of accelaration wave form, low friction tribo-elements are employed in the actuators; a hydrostatic bearing for rod supports, a pressure balanced seal for pistons, a floating ring seal for 3-dimensional joints. Since these elements are large and heavily loaded, the deformation of them are relatively large compared to the oil film gap in the elements and make design difficult. The paper exhibits the tribological performance of the actuators and joints.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1035 ◽  
Author(s):  
Magnus Harrold ◽  
Pablo Ouro

Tidal turbines are subject to highly dynamic mechanical loading through operation in some of the most energetic waters. If these loads cannot be accurately quantified at the design stage, turbine developers run the risk of a major failure, or must choose to conservatively over-engineer the device at additional cost. Both of these scenarios have consequences on the expected return from the project. Despite an extensive amount of research on the mechanical loading of model scale tidal turbines, very little is known from full-scale devices operating in real sea conditions. This paper addresses this by reporting on the rotor loads measured on a 400 kW tidal turbine. The results obtained during ebb tidal conditions were found to agree well with theoretical predictions of rotor loading, but the measurements during flood were lower than expected. This is believed to be due to a disturbance in the approaching flood flow created by the turbine frame geometry, and, to a lesser extent, the non-typical vertical flow profile during this tidal phase. These findings outline the necessity to quantify the characteristics of the turbulent flows at sea sites during the entire tidal cycle to ensure the long-term integrity of the deployed tidal turbines.


Author(s):  
I Bridle ◽  
S R Woodhead

Degradation of bulk solid product during pneumatic conveying is of concern in a range of process industries. However, prediction of product degradation levels at the conveyor design stage has proved challenging. This paper presents a proposed prediction technique, based on the use of a pilot-sized test facility to provide relevant empirical data. The results of experiments undertaken using malted barley, basmati rice, and granulated sugar are reported. For each bulk solid material, a wide range of conveying conditions have been examined, consistent with common industrial practice. Correlations between predictions and experimental data obtained in an industrial-scale conveyor are presented and discussed.


2021 ◽  
Author(s):  
S. J. van der Spuy ◽  
D. N. J. Els ◽  
L. Tieghi ◽  
G. Delibra ◽  
A. Corsini ◽  
...  

Abstract The MinWaterCSP project was defined with the aim of reducing the cooling system water consumption and auxiliary power consumption of concentrating solar power (CSP) plants. A full-scale, 24 ft (7.315 m) diameter model of the M-fan was subsequently installed in the Min WaterCSP cooling system test facility, located at Stellenbosch University. The test facility was equipped with an in-line torque arm and speed transducer to measure the power transferred to the fan rotor, as well as a set of rotating vane anemometers upstream of the fan rotor to measure the air volume flow rate passing through the fan. The measured results were compared to those obtained on the 1.542 m diameter ISO 5801 test facility using the fan scaling laws. The comparison showed that the fan power values correlated within +/− 7% to those of the small-scale fan, but at a 1° higher blade setting angle for the full-scale fan. To correlate the expected fan static pressure rise, a CFD analysis of the 24 ft (7.315 m) diameter fan installation was performed. The predicted fan static pressure rise values from the CFD analysis were compared to those measured on the 1.542 m ISO test facility, for the same fan. The simulation made use of an actuator disc model to represent the effect of the fan. The results showed that the predicted results for fan static pressure rise of the installed 24 ft (7.315 m) diameter fan correlated closely (smaller than 1% difference) to those of the 1.542 m diameter fan at its design flowrate but, once again, at approximately 1° higher blade setting angle.


Author(s):  
Jinheng Luo ◽  
Xinwei Zhao ◽  
Qingren Xiong ◽  
Chunyong Huo

The life prediction, whose results can be used to define the inspection, repair or replacement cycle of in-service pipeline, is a main component of safety assessment of gas and oil pipeline. At present, failure Assessment Diagram (FAD) technique has been widely used in quantitative engineering safety evaluation system of pipeline that contains crack-like flaws. In past work, the authors developed a very useful model to predict the fatigue life of defective pipeline and established a computer calculating method. Based on FAD technique, toughness ratio and load ratio are calculated repeatedly with every crack increment in the model. With the self-developed full-scale test system, the full-scale pipe fatigue test was collected to verify the applicability of this method.


2018 ◽  
Vol 4 (3) ◽  
pp. 179-183
Author(s):  
Andrey Kirillov ◽  
Valeriy Yarygin

Studies and tests are conducted to determine the performance of thermionic nuclear power plants (TNPP) a stage in which is pre-irradiation testing of laboratory thermionic converters (TIC) with flat and cylindrically shaped electrodes using test facilities fitted with automated data measurement systems (DMS). The TIC volt-ampere characteristics (VAC) are measured in the DMS jointly with the measured test section and experimental test facility temperature fields. The structure and the characteristics of a DMS based on products from ICP DAS Co., Ltd are presented. A developed VAC measurement program providing the operator with a convenient graphic interface and enabling adjustment of the measurement parameters has been considered. The VAC recording errors in the process of measurements have been determined using TIC simulators. The error in the VAC diffusion portion on a simulator (with a current of less than 3 A) is not more than 1%. Thanks to the use of modern components, the developed DMS offers extended functional capabilities for measuring the thermocouple signals in an experimental electrophysical test facility. The DMS structure provides for the convenience of scaling (through a larger number of measuring channels) and makes it possible to add modules from other manufacturers. The experience of operating this DMS will be used to develop the DMS for an in-pile test system designed for similar functions.


Sign in / Sign up

Export Citation Format

Share Document