Environmental Fatigue Testing of Type 304L Stainless Steel U-Bends in Simulated PWR Primary Water

Author(s):  
John Hickling ◽  
Renate Kilian ◽  
Leslie Spain ◽  
John Carey

Environmental fatigue testing of small-scale austenitic stainless steel components under simulated pressurized water reactor (PWR) operating conditions was sponsored by the EPRI Materials Reliability Program (MRP) Fatigue Issue Task Group and the U.S. Department of Energy to fill in some important gaps in the knowledge base. An analysis and assessment of existing fatigue data for stainless steel exposed to the PWR primary environment identified a lack of data with respect to flow rate effects. The majority of existing data has been gained under static or quasi-static flow conditions, where the tendency to environmental enhancement of cyclic crack growth is generally expected to increase. However plant experience — where high-flow conditions prevail — shows significantly lower susceptibility to corrosion fatigue cracking. The main objective of the present test program was the identification of flow-rate effects on the initiation and growth of low-cycle corrosion fatigue (LCF) cracks in cold-drawn, 304L stainless steel tube U-bend specimens undergoing cyclic loading and simultaneous exposure to simulated PWR primary water on the inside of the tube. Use was made of a pre-existing facility at F-ANP in Germany where the experimental concept had been previously tested on carbon-steel U-bends. The test equipment was set up so as to allow direct comparison of results obtained under quasi-stagnant conditions (∼0.005 m/s flow rate at the internal surface) with relatively high-flow conditions (∼ 2.2 m/s flow rate). In accordance with literature data, PWR primary water was shown to have a significant effect on the high-temperature fatigue behavior of the bends, as demonstrated by the observed change in failure mode and location of cracking between baseline specimens (tested in nitrogen) and those bends exposed to simulated reactor coolant. Metallography and fractography suggest that the environment is acting by affecting both crack initiation and crack growth. In contrast to the situation for carbon steel, no beneficial effect of higher flow rate on the number of cycles to failure (leakage) was observed. The paper discusses further details of the environmental fatigue data obtained, including the effects of strain amplitude, strain rate and surface condition. It also provides a comparison of test results with the current ASME Section III fatigue curves.

Author(s):  
Akihiko Hirano ◽  
Michiyoshi Yamamoto ◽  
Katsumi Sakaguchi ◽  
Tetsuo Shoji ◽  
Kunihiro Iida

The flow rate of water flowing over a steel surface is considered to be one of the most important factors influencing the fatigue life of the steel, because the water flow produces differences in the local environment. The effect of the water flow rate on the fatigue life of carbon, low alloy, and austenitic stainless steels was therefore investigated experimentally. Fatigue testing of low (S = 0.008 wt%) and high (S = 0.016 wt%) sulfur content carbon steels and a low alloy steel was performed at 289°C for various dissolved oxygen concentrations (DO) of less than 0.01 and 0.05, 0.2, and 1 ppm, and at various water flow rates. Three different strain rates of 0.4, 0.01, and 0.001%/s were used in the fatigue tests. For high sulfur carbon steel (S = 0.016 wt%), the effect of a high water flow rate on mitigating fatigue life reduction was more clearly observed at a lower strain rate, irrespective of the DO. This effect of high water flow rate was most notable at a DO of 0.2 ppm, which was the DO level that produced a significant sulfur effect. This indicates that the mechanism responsible for the mitigation of fatigue life reduction is the flushing effect of the water, which eliminates the locally corrosive environment. For high sulfur carbon steel (S = 0.016 wt%), no benefit of a high water flow rate was found at a DO of 0.01 ppm. This was because the environmental effect is insignificant at this low DO level. For low sulfur carbon steel (S = 0.008 wt%) and low alloy steel (S = 0.008 wt%), a high water flow rate had little effect on mitigating fatigue life reduction even at a DO of 0.2 ppm. This indicates that the sulfur is much less influential in low sulfur steel than in high sulfur steel. Fatigue testing of Type 316 nuclear grade stainless steel (316NG) and Type 316 stainless steel (SUS316) was performed at 289°C and 320°C for DO levels of less than 0.01 and 0.05, and 0.2. For austenitic stainless steel, no mitigating effect at a high water flow rate was found. It should be noted rather that there is a possibility that a high water flow rate decreases the fatigue life because a tendency to a slight decrease in fatigue life with an increasing flow rate was observed.


Author(s):  
Kazuya Tsutsumi ◽  
Nicolas Huin ◽  
Thierry Couvant ◽  
Gilbert Henaff ◽  
Jose Mendez ◽  
...  

Over the last 20 years or so, many studies have revealed the deleterious effect of the environment on fatigue life of austenitic stainless steels in pressurized water reactor (PWR) primary water. The fatigue life correlation factor, so-called Fen, has been standardized to consider the effect on fatigue life evaluation. The formulations are function of strain rate and temperature due to their noticeable negative effect compared with other factors [1,2]. However, mechanism causing fatigue life reduction remains to be cleared. As one of possible approaches to examine underlying mechanism of environmental effect, the authors focused on the effect of plastic strain, because it could lead microstructural evolution on the material. In addition, in the case of stress corrosion cracking (SCC), it is well known that the strain-hardening prior to exposure to the primary water can lead to remarkable increase of the susceptibility to cracking [3,4]. However, its effect on fatigue life has not explicitly been investigated yet. The main effort in this study addressed the effect of the prior strain-hardening on low cycle fatigue life of 304L stainless steel (SS) exposed to the PWR primary water. A plate of 304LSS was strain hardened by cold rolling or tension prior to fatigue testing. The tests were performed under axial strain-controlled at 300 °C in primary water including B/Li and dissolved hydrogen, and in air. The effect on environmental fatigue life was investigated through a comparison of the Fen in experiments and in regulations, and also the effect on the fatigue limit defined at 106 cycles was discussed.


Alloy Digest ◽  
1996 ◽  
Vol 45 (7) ◽  

Abstract Sandvik 3R12/4L7 is a composite tube consisting of type 304L stainless steel for corrosion resistance on the outside diameter and having carbon steel (A210 Gr. A1) as the inside component for both water wetted service and the design load. The major application is tubing to handle the corrosive conditions in black liquor recovery boilers. This datasheet provides information on composition, physical properties, microstructure as well as fatigue. It also includes information on forming, heat treating, and joining. Filing Code: SA-482. Producer or source: Sandvik.


2018 ◽  
Vol 152 ◽  
pp. 02015
Author(s):  
Yoong Sion Ong ◽  
Ken Sim Ong ◽  
Y.k. Tan ◽  
Azadeh Ghadimi

A conventional design of rainwater harvesting system collects and directs the rainwater through water piping from roof of building to the water storage. The filtration system which locates before the water tank storage and first flush bypass system is the main focus of the research. A filtration system consists of a control volume of filter compartment, filter screen (stainless steel mesh) and water piping that direct the water flow. The filtration efficiency of an existing filter “3P Volume Filter VF1” by industrial company is enhanced. A full scale filter design prototype with filter screen of 1000 μm stainless steel metal mesh is tested to compare with the original filter system design. Three types of water inlet setups are tested. Among the proposed water inlet setups, the 90° inlet setup with extension provides the best filtration rate per unit time, following by the 45° inlet setup. The 45° and 90° inlet setup has similar filtration efficiency at low to medium flow rate while 45° inlet setup has better efficiency at high flow rate. The filtration efficiency with the 90° inlet setup with extension is observed to maintain at highest value at medium to high flow rate. The overall filtration performance achieved by the 90° inlet setup with extension at low to high flow rate is between 34.1 to 35.7%.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1260 ◽  
Author(s):  
Khan ◽  
Ya ◽  
Pao

Erosion-corrosion is an unavoidable material degradation process in flow pipelines transporting abrasive particles with carrier fluids. In this study, the multiphase flow loop apparatus is employed to assess the erosion-corrosion behavior and mechanism relative to AISI 1018 carbon steel (CS) and AISI 304L stainless steel (SS) 90° long radius elbows with the inner diameter of 50.8 mm. Fine silica sand of 50 µm average size was used as a dispersed phase and erosion-corrosion tests were conducted for slug flow conditions. The erosion-corrosion analysis of 90° elbows was determined from its surface morphologies before and after the experiment using confocal and scanning electron microscopy (SEM). The direct mass loss was measured to quantify the erosion-corrosion rate of the elbow configurations. Additionally, multilayer paint modeling experiments were performed to relate qualitative inferences on erosion distribution and location with the erosion-corrosion mechanism. It was observed that the erosion or corrosion pitting mechanism prevailed on the 1018 CS elbow surface, and the 304L SS displayed excellent erosion-corrosion resistance properties. Moreover, the erosion-corrosion rate was found to be 4.12 times more in the 1018 CS compared to the 304L SS with the maximum particle impaction identified at the exit of the horizontal-horizontal (H-H) 90° elbow for slug flow.


Author(s):  
Akihiko Hirano ◽  
Katsumi Sakaguchi ◽  
Tetsuo Shoji

Fatigue tests in simulated LWR environment of carbon and stainless steels were performed under high water flow rates between 7 to 10 m/s. For carbon steel, high flow rate of water clearly mitigated the environmental effect on the fatigue life at the high sulfur concentration of 0.016% which caused high environmental effect on a fatigue life. On the contrary, high flow rate of water slightly enhanced the environmental effect at the low sulfur concentration at or less than 0.008% which caused very low environmental effect. These results suggested that the environmental fatigue life under various flow rate conditions should be determined by the combination between the mitigating effect caused by flushing of the severe local environment and the enhancing effect caused by increase in corrosion potential. Low alloy steel showed the similar behavior as carbon steel. For stainless steel, flow rate had little effect on the fatigue life of type 316NG stainless steel. It suggested that there was no role of water flushing. For type 304 and 304L stainless steel, fatigue life has a tendency to decrease with increase in water flow rate. Fatigue lives of type 304 stainless steel under high flow rate of 7 to 10 m/s were shorter than those predicted by proposed fatigue life prediction equation by the Japanese EFT committee. This effect should be considered in an evaluation of environmental fatigue. No water flow effect was found in cast stainless steel.


2021 ◽  
Vol 556 ◽  
pp. 153258
Author(s):  
Kathleen Jaffré ◽  
Hiroshi Abe ◽  
Benoît Ter-Ovanessian ◽  
Nicolas Mary ◽  
Bernard Normand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document