Creep-Fatigue Life Assessment Under Multiaxial Strain State

Author(s):  
Shengde Zhang ◽  
Masao Sakane ◽  
Takamoto Itoh

This paper studies the multiaxial creep-fatigue life for type 304 stainless steel at elevated temperature. Strain controlled biaxial tension-compression creep-fatigue tests were carried out using cruciform specimens under four strain waves at three principal strain ratios. The strain wave and the principal strain ratio had a significant effect on creep-fatigue life of the cruciform specimen. The creep-fatigue life ratio decreased as the principal strain ratio increased which indicates that larger creep damage occurred at larger principal strain ratio. The effects of the strain wave and principal strain ratio were discussed in relation to the observations of surface crack and void area density in the gage part of the specimen. Creep-fatigue lives were discussed in relation to the principal stress amplitude calculated by finite element analysis and creep-fatigue damage was evaluated by linear damage rule.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Dianyin Hu ◽  
Rongqiao Wang ◽  
Guicang Hou

A new lifetime criterion for withdrawal of turbine components from service is developed in this paper based on finite element (FE) analysis and experimental results. Finite element analysis is used to determine stresses in the turbine component during the imposed cyclic loads and analytically predict a fatigue life. Based on the finite element analysis, the critical section is then subjected to a creep-fatigue test, using three groups of full scale turbine components, attached to an actual turbine disc conducted at 750 °C. The experimental data and life prediction results were in good agreement. The creep-fatigue life of this type of turbine component at a 99.87% survival rate is 30 h.


Author(s):  
Takashi Ogata

High-temperature components in thermal power plants are subjected to creep-fatigue loading where creep cavities initiate and grow on grain boundaries. Development of life assessment methods of high-temperature components in gas turbine for maintenance and operating cost reduction is strongly demanded by Japanese utilities. Especially, first row blades are subjected to complicated thermomechanical-fatigue (TMF) loading during start, steady state, stop cycles. Therefore it is important to clarify the TMF life property of blade materials to develop a life assessment procedure. In this study, tension-torsion biaxial TMF tests have been performed between 450°C and 870°C on a Ni-base directional solidified superalloy. Strain ratio ϕ was defined as shear strain range, Δγ, to normal strain range, Δε, and ϕ varied from 0 to infinity. The “Blade wave form,” which simulated temperature and strain condition of the blade surface, was employed. The biaxial TMF tests were also carried out on coated specimens with CoCrAlY. Fatigue life under the biaxial TMF loading showed strain ratio dependency giving shorter life with increasing ϕ. Considering biaxial stress effect on the failure life, an equivalent shear strain range was derived based on the Γ-plane theory, and the biaxial TMF life was well correlated with the equivalent shear strain range. The biaxial TMF life was reduced by introducing strain hold duration at the maximum temperature. The maximum stress increased by introducing the hold time due to increasing mean stress level in the Blade wave form. It was concluded that creep damage gradually accumulated during cycles resulting in reduction in the TMF life. The nonlinear creep-fatigue damage accumulation model was applied to predict failure life of the hold time tests. As a result, the failure lives were predicted within a factor of 1.5 on the observed life. It was found that the fatigue life of CoCrAlY coated material reduced 1∕2 to 1∕3 from that of the substrate. From observation of the longitudinal section of the coated specimens, many cracks started from the coating surface and penetrated into the substrate. It was concluded that the CoCrAlY coating reduced the biaxial TMF life due to acceleration of crack initiation period in the substrate.


Author(s):  
Takamoto Itoh ◽  
Masao Sakane

This paper describes high temperature multiaxial low cycle fatigue lives of type 304 stainless steel and 1Cr-1Mo-1/4V steel cruciform specimens at 823K and 923K in air. Strain controlled multiaxial low cycle fatigue tests were carried out using cruciform specimens at the principal strain ratios between −1 and 1. The principal strain ratio had a significant effect on low cycle fatigue lives. Fatigue lives drastically decreased as the principal strain ratio increased. Multiaxial low cycle fatigue strain parameters were applied to the experimental data and the applicability of the parameters was discussed. The equivalent strain based on crack opening displacement (COD strain) developed in the paper and Γ*-plane parameter successfully predicted multiaxial low cycle fatigue lives. The crack morphology was also extensively discussed from not only the surface crack direction but also the crack inclination into the specimen.


2016 ◽  
Vol 853 ◽  
pp. 366-371
Author(s):  
Daniele Barbera ◽  
Hao Feng Chen ◽  
Ying Hua Liu

As the energy demand increases the power industry has to enhance both efficiency and environmental sustainability of power plants by increasing the operating temperature. The accurate creep fatigue life assessment is important for the safe operation and design of current and future power plant stations. This paper proposes a practical creep fatigue life assessment case of study by the Linear Matching Method (LMM) framework. The LMM for extended Direct Steady Cycle Analysis (eDSCA) has been adopted to calculate the creep fatigue responses due to the cyclic loading under high temperature conditions. A pipe intersection with dissimilar material joint, subjected to high cycling temperature and constant pressure steam, is used as an example. The closed end condition is considered at both ends of main and branch pipes. The impact of the material mismatch, transitional thermal load, and creep dwell on the failure mechanism and location within the intersection is investigated. All the results demonstrate the capability of the method, and how a direct method is able to support engineers in the assessment and design of high temperature component in a complex loading scenario.


2006 ◽  
Vol 324-325 ◽  
pp. 387-390
Author(s):  
Yoon Suk Chang ◽  
Shin Beom Choi ◽  
Jae Boong Choi ◽  
Young Jin Kim ◽  
Myung Jo Jhung ◽  
...  

Major nuclear components have been designed by conservative codes to prevent unanticipated fatigue failure. However, more realistic and effective assessment is necessary in proof of continued operation beyond the design life. In the present paper, three-dimensional stress and fatigue evaluation is carried out for pressurizer employing complex full geometry itself instead of conventional discrete subcomponents. For this purpose, temperature and mechanical stress transfer Green’s functions are derived from finite element analyses and applied to critical locations of pressurizer. In accordance with comparison of resulting stresses obtained from the Green’s function and detailed finite element analysis, suitability of the specific Green’s function is investigated. Finally, prototype of fatigue life assessment results is provided along with relevant ongoing activities.


2018 ◽  
Vol 29 (19) ◽  
pp. 3710-3724 ◽  
Author(s):  
Giulia Scalet ◽  
Costantino Menna ◽  
Andrei Constantinescu ◽  
Ferdinando Auricchio

Self-expanding stents made of Nitinol, a Nickel–Titanium shape memory alloy, are used in standard medical implants for the treatment of cardiovascular diseases. Despite the increasing success, clinical studies have reported stent failure after the deployment in the human body, thus undermining patient’s safety and life. This study aims to fill the gap of reliable assessment of the fatigue life of Nitinol stents. We propose a global computational design method for preclinical validation of Nitinol stents, which can be extended to patient-specific computations. The proposed methodology is composed of a mechanical finite element analysis and a fatigue analysis. The latter analysis is based on a novel multiaxial fatigue criterion of the Dang Van type, combining the shakedown response of the stent and the complexity of phase transformation taking place within the material. The method is implemented in the case of a carotid artery stent. The implant configuration as well as the applied cyclic loading are shown to affect material phase evolution as well as stent lifetime. The comparison with the results obtained by applying a strain-based constant-life diagram approach allows to critically discuss both fatigue criteria and to provide useful recommendations about their applicability.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Ehsan Borouji ◽  
Takafumi Nishino

Fluid structure interaction (FSI) simulations of the NREL 5 MW wind turbine are performed using a combination of two separate computational codes: abaqus for the finite element analysis (FEA) of turbine structures and STAR-CCM+ for the unsteady Reynolds-averaged Navier–Stokes analysis of flow around the turbine. The main aim of this study is to demonstrate the feasibility of using two-way coupled FSI simulations to predict the oscillation of the tower, as well as the rotor blades, of a full-scale wind turbine. Although the magnitude of the oscillation of the tower is much smaller than that of the blades, this oscillation is crucial for the assessment of the fatigue life of the tower. In this first part of the paper, the aerodynamic characteristics of the turbine predicted by the two-way coupled FSI simulations are discussed in comparison with those predicted by Reynolds-averaged Navier–Stokes simulations of a rigid turbine. Also, two different computational domains with a cross-sectional size of 2D × 2D and 4D × 4D (where D is the rotor diameter) are employed to investigate the blockage effect. The fatigue life assessment of the turbine is planned to be reported in the second part of the paper in the near future.


Author(s):  
Masanori Ando ◽  
Hiroshi Kanasaki ◽  
Shingo Date ◽  
Koichi Kikuchi ◽  
Kenichiro Satoh ◽  
...  

In a component design at elevated temperature, fatigue and creep-fatigue is one of the most important failure modes, and fatigue and creep-fatigue life assessment in structural discontinuities is important issue to evaluate structural integrity of the components. Therefore, to assess the failure estimation methods, cyclic thermal loading tests with two kinds of cylindrical models with thick part were performed by using an induction heating coil and pressurized cooling air. In the tests, crack initiation and propagation processes at stress concentration area were observed by replica method. Besides those, finite element analysis (FEA) was carried out to estimate the number of cycles to failure. In the first test, a shorter life than predicted based on axisymmetric analysis. Through the 3 dimensional FEA, Vickers hardness test and deformation measurements after the test, it was suggested that inhomogeneous temperature distribution in hoop direction resulted in such precocious failure. Then, the second test was performed after improvement of temperature distribution. As a result, the crack initiation life was in a good agreement with the FEA result by considering the short term compressive holding. Through these test and FEA results, fatigue and creep-fatigue life assessment methods of Mod.9Cr-1Mo steel including evaluation of cyclic thermal loading, short term compressive holding and failure criterion, were discussed. In addition it was pointed out that the temperature condition should be carefully controlled and measured in the structural test with Mod.9Cr-1Mo steel structure.


2014 ◽  
Vol 945-949 ◽  
pp. 1086-1089
Author(s):  
Bin Xu ◽  
Tao Zhang ◽  
Feng Qi Wu ◽  
Zhen Rong Yan

Ship unloader crane was widely used in transportation, and uploaded or unloaded cargoes from ships, which could influence efficiency and benefits of transportation greatly. In order to improve the reliability and safety, and decrease its risk in working flow, a method of fatigue life assessment was proposed in this paper. According to related standards and properties of risk, finite element method and experimental stress analysis were integrated to assess the working condition of a ship unloader crane. Finite element models of primary structures subjected to loads were built to achieve dynamic properties, which could supply a basic reference to experiment and guidance to locate the tested positions. Afterwards, wireless dynamic resistance strain-gauges were adopted to execute static and dynamic stress, and the tested results combined with finite element analysis were applied to strength analysis. Based on nominal stress and Miner principle, rainflow method was developed to fatigue life assessment of this ship unloader crane. The final results indicated that residual life of this crane was 4.67 years.


Sign in / Sign up

Export Citation Format

Share Document