The Natural Vibration of Fluid-Structure Interaction Systems Subject to the Sommerfeld Radiation Condition

Author(s):  
Jing T. Xing

A fluid-structure interaction system subject to a Sommerfeld condition is defined as a Sommerfeld system in this paper. It is well known that the natural vibration of a dynamic system is defined by the eigenvalue problem of the corresponding idealized system with no material damping assumed and external forces. From the defined eigenvalue problem, the real natural frequencies and the corresponding natural modes of the system can be derived. What are the characteristics of natural vibrations of a Sommerfeld system? This paper intends to address this problem by investigating three selected fluid-structure interaction systems. The systems chosen involve the solid structures with one, two and infinite degrees of freedom coupling to an infinite fluid domain subject to a Sommerfeld condition, respectively. The governing equations describing these coupled systems are presented using the theory of continuum mechanics. The theoretical solution for each problem is derived and discussed. The analysis demonstrates that a Sommerfeld system undergoing a natural vibration behaves energy dissipative characteristics although there is no material damping in solid and fluid of the system. The natural vibrations of a Sommerfeld system are governed by a complex eigenvalue problem which has only pairs of complex conjugate natural frequencies. The number of the complex conjugate natural frequencies and corresponding natural modes of this Sommerfeld system equals to the number of the degrees of freedom of the dry solid structure in the system and it is independent of the infinite fluid domain. The natural vibration forms of the solid structure in natural vibrations do not satisfy the orthogonal relationship. The findings in this research reveal some common dynamic characteristics of Sommerfeld systems. An approach for the dynamic response analysis of a Sommerfeld system is proposed based on the orthogonal natural modes of the dry structure in the system which is more efficient for engineering analysis.

Author(s):  
Gudrun Mikota ◽  
Rainer Haas ◽  
Evgeny Lukachev

Fluid-structure interaction in a bent pipeline is investigated by modal methods. Measured frequency response functions between flow rate excitation and pressure response indicate a coupling effect near the third pipeline resonance. Using modal coordinates for the hydraulic and the mechanical subsystems, a two-degrees-of-freedom study of resonance coupling is carried out. An experimental modal analysis of the coupled hydraulic-mechanical system confirms the predicted resonance splitting; it illustrates the coupling mechanism and shows the relevant mechanical part. An analytical fluid-structure interaction model succeeds in reproducing the measured coupling effect. This model is also used for modification prediction; it demonstrates that an appropriate assembly of mass and damping on the pipeline can help to reduce hydraulic resonance amplitudes.


2014 ◽  
Vol 1016 ◽  
pp. 244-248
Author(s):  
Fei Liu ◽  
Wei Liang He

The stress distribution and modal characteristics of a space inflatable torus is investigated using the nonlinear finite element method. This paper focused on the effect of enclosed air on the modal analysis of the torus, including the effect of follower pressure load and the effect of the interaction between the enclosed air and the torus structure. Research shows that follower pressure stiffness significantly reduces the natural frequencies and changes mode shapes order. The fluid-structure interaction obviously reduces the natural frequencies, and the in-plane translation mode is observed. Follower pressure stiffness has no effect on the in-plane translation mode. Fluid-structure interaction decreases the natural frequencies of the modal considering the follower load effect, but it does not change mode shapes order. The effect of enclosed gas seriously reduces the natural frequencies, changes mode shapes order, and produces the in-plane translation mode.


Author(s):  
Yohei Magara ◽  
Mitsuhiro Narita ◽  
Kazuyuki Yamaguchi ◽  
Naohiko Takahashi ◽  
Tetsuya Kuwano

Characteristics of natural frequencies of an impeller and an equivalent disc were investigated in high-density gas to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications. The equivalent disc had outer and inner diameters equal to those of the impeller. We expected that natural frequencies would decrease with increasing the gas density because of the added-mass effect. However, we found experimentally that some natural frequencies of the impeller and the disc in high-density gas decreased but others increased. Moreover, we observed, under high-density condition, some resonance frequencies that we did not observe under low-density condition. These experimental results cannot be explained by only the added-mass effect. For simplicity, we focused on the disc to understand the mechanism of the behavior of natural frequencies. We developed a theoretical analysis of fluid-structure interaction considering not only the mass but also stiffness of gas. The analysis gave a qualitative explanation of the experimental results. In addition, we carried out a fluid-structure interaction analysis using the finite element method. The behavior of natural frequencies of the disc in high-density gas was predicted with errors less than 6%.


2012 ◽  
Vol 468-471 ◽  
pp. 238-244
Author(s):  
Zhao Wang ◽  
Zhi Jin Zhou ◽  
Hao Lu ◽  
Ze Jun Wen ◽  
Yi Min Xia

Using finite element software ADINA, three coupling models on fluid-structure interaction among internal fluid—pipe—external fluid in the lifting pipeline were researched. Firstly, coupling finite element model on fluid structure interaction of lifting pipeline was established and the first sixth order natural frequencies and principal vibration modes were attained at different ore conveying volume concentration and cross-section size of pipeline;Then natural frequencies of three couplings were compared with two couplings and no coupling according to the above condition, and FSI effect on natural frequency of pipeline was discussed. The calculation results were shown that the natural frequency of the pipe and its relative error reduced with the volume concentration and the relative wall thickness increased, which explain the reason that has better accuracy considering three couplings than other .These results have certain directive significance on the dynamic response, structure design and study of reduction vibration of lifting pipeline.


PAMM ◽  
2012 ◽  
Vol 12 (1) ◽  
pp. 633-634 ◽  
Author(s):  
Cedric Effenberger ◽  
Daniel Kressner ◽  
Olaf Steinbach ◽  
Gerhard Unger

2018 ◽  
Vol 8 (10) ◽  
pp. 1844 ◽  
Author(s):  
David Ferras ◽  
Pedro Manso ◽  
Anton Schleiss ◽  
Dídia Covas

The present review paper aims at collecting and discussing the research work, numerical and experimental, carried out in the field of Fluid–Structure Interaction (FSI) in one-dimensional (1D) pressurized transient flow in the time-domain approach. Background theory and basic definitions are provided for the proper understanding of the assessed literature. A novel frame of reference is proposed for the classification of FSI models based on pipe degrees-of-freedom. Numerical research is organized according to this classification, while an extensive review on experimental research is presented by institution. Engineering applications of FSI models are described and historical accidents and post-accident analyses are documented.


Author(s):  
Igor Orynyak ◽  
Anatolii Batura ◽  
Yaroslav Dubyk

The approach for quick and effective search of natural vibration frequencies of multibranched beam systems with distributed mass, developed by F.W. Williams and W.H. Wittrick, is adopted for complex pipe systems with fluid-structure interaction. The general principle of the matrix composition is formulated for the case of beam systems of arbitrary complexity. The flexibility of such principle allows to extend it and to take into account the fluid free vibration. The special approach is developed to consider the fluid boundary conditions at the ends of the pipeline and a volumetric balance equation in the junctions. The formulated methods are implemented in an effective calculation procedure for the search of natural frequencies of coupled vibrations of the system with fluid-structure interaction, i.e. taking into account junction coupling as well as Poisson coupling. The procedure accuracy is demonstrated for a number of comparison examples.


Sign in / Sign up

Export Citation Format

Share Document