Repair Weldability at Overlay/Base Metal Interface of Petroleum Pressure Vessel

Author(s):  
Rinzo Kayano ◽  
Hiroaki Mori ◽  
Kazutoshi Nishimoto

In order to extend the life of petroleum pressure vessels operated in long term, it is needed to establish the reliable repair welding technique. Weld cold cracking sometimes occurred in long-term operated petroleum pressure vessels due to hydrogen embrittlement by thermal stress and diffusible hydrogen after repair welding. The cracking was caused by the hydrogen concentration at the base meal of 2.25Cr-1Mo steel/overlaying metal of austenitic stainless steels interface during the service with high temperature and hydrogen partial pressure. The tendency was accelerated by carbide precipitation at the interface due to the post weld heat treatment (PWHT) and the operation with high temperature. That is, the crack susceptibility at the interface became markedly higher owing to the hydrogen embrittlement with metallurgical degradation by thermal embrittlement. To make clear the effect of weld thermal cycles during repair welding on the hydrogen content and weld cold cracking at the interface in the structural material of petroleum pressure vessels, the crack susceptibility was estimated by y-groove weld cracking test with varying overlay thickness and hydrogen exposure conditions. In addition, the hydrogen distribution in the material was calculated by the theoretical analysis using the diffusion equation based on activity. The crack susceptibility was raised with increase in the hydrogen content at the interface. It was concluded that the cracking could be prevented by controlling the repair welding process to reduce the hydrogen content at the interface.

2008 ◽  
Vol 580-582 ◽  
pp. 5-8
Author(s):  
Hiroaki Mori ◽  
Kazutoshi Nishimoto ◽  
Rinzo Kayano

In order to extend the life of petroleum pressure vessels operated in long term, it is demanded to establish the repair welding technique. To make clear the effect of weld thermal cycles during repair welding on the hydrogen content and weld cold cracking at the base metal of 2.25Cr- 1Mo steel / overlaying metal of austenitic stainless steels interface in the structural material of petroleum pressure vessels, the crack susceptibility was estimated by y-groove weld cracking test and repair welding test with varying overlay thickness and hydrogen exposure conditions. In addition, the hydrogen distribution in the material was calculated by the theoretical analysis using the diffusion equation based on activity. The crack susceptibility was raised with increase in the hydrogen content at the interface. It was concluded that the cracking could be prevented by controlling the repair welding process to reduce the hydrogen content at the interface.


Author(s):  
Rinzo Kayano ◽  
Eiichi Yamamoto ◽  
Takayasu Tahara

Pressure vessels made from Cr-Mo steels are utilized for high temperature and high pressure services including hot hydrogen services. After long term operation, there are several past experiences of damages and/or degradation of materials such as temper embrittlement, creep embrittlement, hydrogen attack and hydrogen embrittlement. This paper summarizes typical damages/degradation and examples of weld repairs including special attention to development of weld repair procedure. The subject equipments are heavy wall petroleum pressure vessels made from Cr-Mo steel with austenitic stainless steel overlay cladding. Cracking could be prevented by controlling the repair welding process to reduce the hydrogen content at the interface. After repair welding, adequate post weld heat treatment (PWHT) has to be executed. Recently, repair welding has become an important aspect as part of post construction codes for pressure equipment to keep safe and long term continuous operation of the process plants because many of the plants have been operated for more than thirty years in Japan. Responding to the needs of petroleum and chemical industries, The Chemical Plant Welding Research Committee (CPWRC) of The Japan Welding Engineering Society (JWES) established the Pressure Equipment Repair Welding Subcommittee (PERW S/C) [1]. The S/C has developed optimum repair welding methods and procedures in the guideline on November 2009, with reference to the above investigation results. This paper also introduces the repair welding guideline for the pressure vessels made from Cr-Mo steels.


2008 ◽  
Vol 580-582 ◽  
pp. 13-16
Author(s):  
Hee Jin Kim ◽  
Jun Seok Seo ◽  
Jae Hak Kim ◽  
Ka Hee Kim ◽  
Jin Hyun Koh ◽  
...  

Facing the practical difficulties in reducing the diffusible hydrogen content of fluxcontaining welding consumables like flux-cored arc welding (FCAW) wires, the present study investigated the microstructural aspect to improve the hydrogen-induced cold crack (HICC) resistance of multipass weld metal of 600MPa strength. Two FCA welding wires were prepared by controlling the Ni content to give different weld microstructure, but to have similar levels of hardness and diffusible hydrogen content. HICC susceptibility of those two consumables was evaluated by 'G-BOP test' and also by 'multi-pass weld metal cold cracking test'. As a result of this study, it was demonstrated that microstructural modification with decreased proportion of grain boundary ferrite (GF) improved cold crack resistance of weld metal. The detrimental effect of GF against HICC has also been addressed based on the characteristics of weld metal cold cracking.


Author(s):  
Rinzo Kayano ◽  
Masamitsu Abe ◽  
Yukio Hirai

It has been recognized that repair welding plays an important role in the long term, safe operation of pressure equipment. In 2009, The Japan Welding Society (JWES) published guidelines for repair welding of pressure equipment [1], to meet the great need for the safe operation and proper maintenance of aging plants. Pressure equipments made from carbon steel, high tensile steel and Cr-Mo steels are utilized for high pressure services. The subject equipments are pressure vessels, heat exchangers, piping, and storage tanks for petroleum, petrochemical and liquefied natural gas industry. This paper summarizes category and property of these steels and repair welding method including special attention. Especially, weld cold cracking for these steels could be prevented by controlling the repair welding and post-weld heat treatment process to reduce the hydrogen content, hardness and weld residual stress.


Author(s):  
Gautam Chauhan ◽  
Piyush Thakor ◽  
Satyanarayana Samavedam ◽  
Ramakrishnan Mannarsamy ◽  
Ashif Sheikh ◽  
...  

The mechanical properties of welding material is correlative with the diffusible hydrogen content in weld metal and level of moisture content in flux. Minitab16program to predict mechanical properties correlated to diffusible hydrogen content in weld metal and level of moisture content in flux, such as yield strength, tensile strength, elongation and average Charpy impact toughness of welding material is established by using submerged arc welding process in line pipe manufacturing. The present paper aims to experiment and investigate the line pipe SAW Flux used for offshore/onshore applications. Flux moisture content has been studied under Karl Fischer Coulometer method. Subsequently, flux was then used to make weld to analysis for ‘diffusible hydrogen content in weld metal’ through mercury displacement method. This detailed study envisages and explains the correlations between the mechanical properties and micro structures of weldments. Evaluating the variance of moisture level in flux and diffusible hydrogen content in weld metal proves the advantage of restricting the moisture content along with good practices to accomplish better weld quality.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5349
Author(s):  
Hyunbin Nam ◽  
Jaeseok Yoo ◽  
Kwanghee Yun ◽  
Guo Xian ◽  
Hanji Park ◽  
...  

This study investigates various factors that influence the cold-cracking ratio (CCR) of flux-cored arc welds through Y- and y-groove tests. Factors affecting the CCR include the alloy component, diffusible hydrogen content, microstructure, hardness, and groove shape. In weld metals (WMs; WM375-R and WM375-B) of a low-strength grade, the diffusible hydrogen content has a more significant effect on the CCR than the carbon equivalent (Ceq) and microstructure. However, the combined effects of the microstructure and diffusible hydrogen content on the CCR are important in high-strength-grade WM. The CCR of the WM increased upon increasing Ceq and the strength grade because hard martensite and bainite microstructures were formed. Moreover, y-groove testing of the 500 MPa grade WM revealed a more significant CCR than that of the 375 MPa grade WM. Therefore, in high-strength-grade WMs, it is necessary to select the groove shape based on the morphology in the real welds.


2019 ◽  
Vol 9 (1) ◽  
pp. 33-37
Author(s):  
Naoki MUKAI ◽  
Yoshihide INOUE ◽  
Shinichi TASHIRO ◽  
Tetsuo SUGA ◽  
Manabu TANAKA

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2947 ◽  
Author(s):  
Jacek Tomków ◽  
Dariusz Fydrych ◽  
Kamil Wilk

In this paper, the effects of different hydrophobic coatings on the surface of covered electrodes on the quality of wet welded carbon steel joints were discussed. Commonly available hydrophobic substances used in industrial applications were selected for the research. The aim of using waterproof coatings was to check the possibility to decreasing the susceptibility of high-strength low-alloy S460N steel to cold cracking. During experiments diffusible hydrogen content in deposited metal determination by mercury method, metallographic macro- and microscopic testing and hardness measurements were performed. Investigations showed that waterproof coatings laid on covered electrodes can improve the quality of wet welded joints, by decreasing the Vickers HV10 hardness in heat-affected zone and decreasing the diffusible hydrogen content in deposited metal, which minimalize possibility of cold cracking.


2019 ◽  
Vol 33 (7-9) ◽  
pp. 268-279
Author(s):  
Naoki Mukai ◽  
Yoshihide Inoue ◽  
Shuji Sasakura ◽  
Yuta Kinoshita

Sign in / Sign up

Export Citation Format

Share Document