The Evaluation of Crack Opening Areas for Through-Wall Cracks in the Vicinity of Pipe Branch Connections

Author(s):  
Colin Madew ◽  
John Sharples ◽  
Richard Charles ◽  
Peter Gill ◽  
Peter Budden

A number of papers have been presented at previous ASME PVP conferences, which have evaluated the crack opening areas (COA) and stress intensity factors (K), using elastic finite element analysis techniques, for through-wall cracks in a region where an attachment is welded to a plate. This was a simplified geometry aimed at representing a more complicated geometry of a pipe-branch connection. A number of analyses were considered and conclusions made on the estimation of COA and K using simple handbook solutions. More recently the analyses included the application of nonlinear geometry and the addition of crack face contact when applying bending loads. This paper is a continuation of these previous studies, assessing through-wall cracks in a more realistic pipe-branch connection geometry. The calculated COA and K values for the more complex geometry are compared to values from pipe models with no branch connections, in a similar manner to that applied in the previous work on the simplified plate geometry. Judgments are made on the conservatism, or otherwise, of the estimated COA and K for the more complex geometry solutions compared to the simple geometry solutions.

Author(s):  
J. K. Sharples ◽  
C. J. Madew ◽  
R. Charles ◽  
P. J. Budden

A paper was presented at the 2009 ASME PVP Conference on evaluating, by finite element techniques, crack opening area (COA) and stress intensity factor, KI, values for through-wall cracks located in the region where an attachment is welded to a plate geometry. Both membrane and bend loads were considered. In addition, based on the stress profile in the un-cracked complex geometry over the region where the cracks would be introduced, COA and KI values were evaluated for the same crack sizes located in a simple plate geometry. This enabled information to be established on the conservatism, or otherwise, of using simple plate solutions to evaluate COA and KI for cracks in the complex geometry. The present paper reports on further studies that have been undertaken to investigate the effect on the previous COA and KI results of considering (i) large displacement theory which may be important for combined membrane and bend loading, and (ii) contact elements in the finite element models since in the previous studies, the mesh was allowed to “overlap on itself” when crack closure was evident due to compressive stresses during bend loading.


Author(s):  
Bruce A. Young ◽  
Rick J. Olson ◽  
Matthew Kerr

Non-linear fracture mechanics equations for through-wall cracks in a pipe are used to analyze piping systems for either critical flaw size or critical loading conditions as part of probabilistic Leak-Before-Break (LBB) failure analyses under the eXtremely Low Probability of Rupture (xLPR) program co-sponsored by the U.S. Nuclear Regulatory Commission (US NRC) and the Electric Power Research Institute (EPRI). The xLPR analysis techniques use a large number of independent analysis solutions to determine an overall assessment of system failure probability. As part of the assessment, each independent solution requires the solution of the crack opening displacement (COD) for a through-wall crack (TWC) in a pipe under the prescribed loading conditions. The COD evaluations are then used to determine a leak rate for the given load conditions and crack sizes. The purpose of this paper is to present results which advance the start-of-the-art for determining the elastic-plastic functions for crack opening displacements (COD) for a TWC in a pipe system under combined tension and bending loads. The current method used to determine COD in xLPR, a blending of tension and bending solution from the GE-EPRI Handbook, determined the continuum equations using structural finite element analyses with shell type elements. Since that body of work was undertaken, there have been significant advancements in computing capability such that structural finite element analyses with three-dimension continuum elements are currently feasible. The use of continuum elements provides several advantages over shell elements; such as, the ability to elicit details of variation in the COD through the thickness of the pipe wall and to apply pressure to the crack face due to the internal pipe pressure. Furthermore, the original GE-EPRI solutions were limited for the case of combined tension and bending loads. The existing GE-EPRI solutions for combined loading conditions are limited to pipe radius-to-wall thickness (R/t) ratios of 10 or greater, typical of those piping systems found in the boiling water reactor (BWR) fleet. For the PWR piping systems of concern today, which are subject to primary water stress corrosion cracking (PWSCC), the R/t ratios are typically 5 or less. As a result of the limitations with the existing GE-EPRI method for predicting COD, Battelle and US NRC staff set out to develop a comprehensive COD prediction tool for combined loadings which would be applicable to both PWR as well as BWR piping. This effort involved a matrix of over 1,200 finite element analyses for a full range of pipe sizes, R/t ratios, through-wall crack (TWC) lengths, and internal pipe pressures. It is anticipated that there will be several parts to this effort. Part I, discussed in this paper, focuses on the development of the model and the initial investigation into the elastic- and elastic-plastic fitting functions for the prediction of COD (i.e., the V and h functions). Future parts of this effort will focus on such issues as the effect of restraint of pressure induced bending on COD, the effect of weld residual stresses on COD, J-Integral estimation schemes, and development of variable crack-face pressure.


Author(s):  
J. K. Sharples ◽  
R. Charles ◽  
C. J. Madew ◽  
P. J. Budden

This paper presents the latest results of a finite element study undertaken to evaluate crack opening areas (COA) and stress intensity factors (KI) for through-wall cracks located in the region where an attachment is welded to a plate geometry. Both membrane and bend loads have been considered. In addition, COAs and stress intensity factors have been evaluated for the same crack sizes located in a simple plate geometry. These values have been determined by applying both membrane and bend stresses to the plain plate, the magnitudes of which correspond to those for the stress profile in the un-cracked complex geometry in the vicinity of where the cracks would be introduced. This has enabled information to be established on the conservatism or otherwise of using simple plate solutions to evaluate COAs and stress intensity factors for cracks in the complex geometry.


Author(s):  
R. Charles ◽  
J. K. Sharples ◽  
P. J. Budden

This paper presents the results of a finite element study that has been undertaken to evaluate crack opening areas (COA) for through-wall flaws located in the region where an attachment is “welded” to a plate geometry. This represents the first stage of a study to evaluate crack opening area solutions for flaws situated in complex geometries such as pipe elbows, nozzles and other attachments. The work has been performed by way of 3D finite element methods. In addition to COA evaluations, stress intensity factors have been determined in the study. The crack opening areas and stress intensity factors evaluated for this complex geometry have been compared with those for the same flaw sizes located in a simple plate geometry. This has led to an initial understanding of how conservative or otherwise the use of plate solutions is for representing the more complex geometry cases.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Sugunarani S ◽  
Santhosh V

This work deals with the analysis of heat generation and dissipation in the disc brake of a car during braking and the following release period by using computer-aided engineering software for three different materials of the rotor disc and brake pad. The objective of this work is to analyze the temperature distribution of rotor disc during operation using COMSOL Multiphysics. The work uses the finite element analysis techniques to calculate and predict the temperature distribution on the brake disc and to identify the critical temperature of the brake rotor disc. Conduction, convection and radiation of heat transfer have been analyzed. The results obtained from the analysis indicates that different material on the same retardation of the car during braking shows different temperature distribution. A comparative study was made between grey cast iron (GCI), Aluminium Metal Matrix Composite (AMMC), Alloy steel materials are used for brake disc and the best material for making brake disc based on the rate of heat dissipation have been suggested.


Author(s):  
Xiandong Zhou ◽  
Christoph Reimuth ◽  
Peter Stein ◽  
Bai-Xiang Xu

AbstractThis work presents a regularized eigenstrain formulation around the slip plane of dislocations and the resultant non-singular solutions for various dislocation configurations. Moreover, we derive the generalized Eshelby stress tensor of the configurational force theory in the context of the proposed dislocation model. Based on the non-singular finite element solutions and the generalized configurational force formulation, we calculate the driving force on dislocations of various configurations, including single edge/screw dislocation, dislocation loop, interaction between a vacancy dislocation loop and an edge dislocation, as well as a dislocation cluster. The non-singular solutions and the driving force results are well benchmarked for different cases. The proposed formulation and the numerical scheme can be applied to any general dislocation configuration with complex geometry and loading conditions.


1981 ◽  
Vol 18 (01) ◽  
pp. 51-68
Author(s):  
Donald Liu ◽  
Abram Bakker

Local structural problems in ships are generally the result of stress concentrations in structural details. The intent of this paper is to show that costly repairs and lay-up time of a vessel can often be prevented, if these problem areas are recognized and investigated in the design stages. Such investigations can be performed for minimal labor and computer costs by using finite-element analysis techniques. Practical procedures for analyzing structural details are presented, including discussions of the results and the analysis costs expended. It is shown that the application of the finite-element analysis technique can be economically employed in the investigation of structural details.


Sign in / Sign up

Export Citation Format

Share Document