High Purity Process Piping: Addition of Chapter X High Purity Piping to the ASME B31.3 Process Piping Code

Author(s):  
Barbara K. Henon ◽  
Dennis Cobb

The 2010 Edition of the American Society of Mechanical Engineers (ASME) B31.3 Procecess Piping Code [1] includes a new chapter: Chapter X High Purity Piping. Chapter X covers industries listed in the scope of ASME B31.3 which use methods of fabrication, examination, inspection and testing different than other industries covered by the Code. Industries which have a need for cleanness and cleanability on a more demanding level, such as the semiconductor industry, which uses Semiconductor Equipment and Materials International (SEMI) Standards [2–4], and the pharmaceutical and bioprocessing industries, which use the ASME Bioprocessing Equipment (BPE) Standard [5], also reference ASME B31.3 for safety requirements. ASME B31.3 now addresses issues common to the semiconductor and biopharmaceutical industries. The new High Purity Fluid Service defined in Chapter X permits weld coupon examination in lieu of the 5% radiography required in Normal Fluid Service when orbital welding is used in fabrication. Industries that may not otherwise be considered as high purity, such as refineries, the chemical processing industry [6–7], solar panel fabrication and nuclear or petrochemical applications that could use tubing rather than pipe, may benefit from the fabrication technology introduced in Chapter X while meeting the safety requirements of the Code.

Alloy Digest ◽  
1970 ◽  
Vol 19 (2) ◽  

Abstract ALLEGHENY ALMAR-362 is an age-hardenable martensitic stainless steel recommended for applications requiring high strength and good corrosion resistance, such as aircraft and missile structures, hydraulic and pneumatic equipment components, and in the chemical processing industry. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-234. Producer or source: Allegheny Ludlum Corporation.


2020 ◽  
Vol 16 (4) ◽  
pp. 595-607 ◽  
Author(s):  
Mu Wen Chuan ◽  
Kien Liong Wong ◽  
Afiq Hamzah ◽  
Shahrizal Rusli ◽  
Nurul Ezaila Alias ◽  
...  

Catalysed by the success of mechanical exfoliated free-standing graphene, two dimensional (2D) semiconductor materials are successively an active area of research. Silicene is a monolayer of silicon (Si) atoms with a low-buckled honeycomb lattice possessing a Dirac cone and massless fermions in the band structure. Another advantage of silicene is its compatibility with the Silicon wafer fabrication technology. To effectively apply this 2D material in the semiconductor industry, it is important to carry out theoretical studies before proceeding to the next step. In this paper, an overview of silicene and silicene nanoribbons (SiNRs) is described. After that, the theoretical studies to engineer the bandgap of silicene are reviewed. Recent theoretical advancement on the applications of silicene for various field-effect transistor (FET) structures is also discussed. Theoretical studies of silicene have shown promising results for their application as FETs and the efforts to study the performance of bandgap-engineered silicene FET should continue to improve the device performance.


2021 ◽  
pp. 565-637
Author(s):  
Luis A. Ganhao ◽  
Jorge J. Perdomo ◽  
James McVay ◽  
Antonio Seijas

Abstract This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Martin Blackman

The required thickness of welding tees is neither specified in ASME (2012, “Factory-Made Wrought Buttwelding Fittings,” American Society of Mechanical Engineers, New York, Standard No. B16.9-2012) nor is a clear calculation method provided in codes such as ASME (2016, “Process Piping,” American Society of Mechanical Engineers, New York, Standard No. B31.3-2016). This can lead to uncertainty regarding the pressure capacity of a tee fitting, particularly one that has suffered from erosion or corrosion. Code methods including area replacement (ASME, 2016, “Process Piping,” American Society of Mechanical Engineers, New York, Standard No. B31.3-2016) or pressure-area (ASME, 2015, “Boiler and Pressure Vessel Code Section VIII Division 2,” American Society of Mechanical Engineers, New York, Standard No. BPVC-VIII-2-2015; BSI, 2014, “Unfired Pressure Vessels Part 3: Design,” BSI, London, UK, Standard No. BS EN 13445-3) do not directly account for the effect which the curvature of the crotch region may have on the stress state in the tee. The approach adopted in this work is to liken the geometry of the tee crotch to the intrados of a torus or pipe bend. The shell theory applicable to the torus is adapted for the tee in order to derive a relationship for circumferential membrane stress. An equivalent tube radius is assigned by determining the local radius of shell curvature in the plane passing through the crotch center of the curvature. The actual stresses in the tee crotch are significantly reduced by the adjoining straight portions. This effect is difficult to quantify theoretically and has thus been investigated by means of finite element analysis (FEA)-based assessments. An empirical relationship was then established providing a conservative correlation between the theoretical stresses and the program calculated local stress intensities.


Sign in / Sign up

Export Citation Format

Share Document