scholarly journals Response of Piping Tees to Propagating Detonations

Author(s):  
Thomas C. Ligon ◽  
David J. Gross ◽  
Joseph E. Shepherd

This paper reports the results of experiments and finite element simulations on the structural response of piping systems to internal detonation loading. Specifically, the work described in this paper focuses on the forces that are produced at tee-junctions that lead to axial and bending structural responses of the piping system. Detonation experiments were conducted in a 2-in. (50 mm) diameter schedule 40 piping system that was fabricated using 304 stainless steel and welded to ASME B31.3 standards. The 4.1 m (162-in.) long piping system included one tee and was supported using custom brackets and cantilever beams fastened to steel plates that were bolted to the laboratory walls. Nearly-ideal detonations were used in a 30/70 H2-N2O mixture at 1 atm initial pressure and 300 K. Pressure and hoop, axial, and support strains were measured using a high-speed (1 MHz) digital data acquisition system and calibrated signal conditioners. It was concluded that detonations propagate through the run of a 90° tee with relatively little disturbance in either direction. The detonation load increases by approximately a factor of 2 when the detonation enters through the branch. The deflections of the cantilever beam supports and the hoop and axial pipe strains could be adequately predicted by finite element simulations. The support loads are adequately predicted as long as the supports are constrained to the piping. This paper shows that with relatively simple models, quantitative predictions of tee forces can be made for the purposes of design or safety analysis of piping systems subject to internal detonations.

Author(s):  
Thomas C. Ligon ◽  
David J. Gross ◽  
Joseph E. Shepherd

This paper reports the results of experiments, analytical models, and finite element simulations on the structural response of piping systems to internal detonation loading. Of particular interest are the interaction of detonations with 90° bends and the creation of forces that lead to axial and bending structural response of the piping system. The piping systems were fabricated using 304 stainless steel, 2-in. (50 mm) diameter schedule 40 commercial pipe with a nominal wall thickness of 0.154-in. (3.8 mm) and welded construction to ASME B31.3 standards. The piping was supported using custom brackets or cantilever beams fastened to steel plates that were bolted to the laboratory walls. Nearly-ideal detonations were used in a 30/70 H2-N2O mixture at 1 atm initial pressure and 300 K. The detonation speeds were close (within 1%) to the Chapman-Jouguet velocity and detonation cell sizes much smaller than the tube diameter. Pressure, displacement, acceleration and hoop, longitudinal, and support strains were measured using a high-speed (1 MHz) digital data acquisition system and calibrated signal conditioners. Detonation propagation through a bend generates a longitudinal stress wave in the piping that can be observed on the strain gauges and is predicted by both analytical models and finite element simulations. The peak magnitude of the bend force is approximately twice that due to the pressure alone since the peak momentum flux of the flow behind the detonation front is comparable to the pressure in the front. With relatively simple models, quantitative predictions of the bend forces can be made for the purposes of design or safety analysis of piping systems with internal detonations.


2020 ◽  
Vol 14 (27) ◽  
pp. 55-66
Author(s):  
Hugo Leonardo Murcia Gallo ◽  
Richard Lionel Luco Salman ◽  
David Ignacio Fuentes Montaña

The main objective of this study is to analyze the structural response of a boat during a slamming event using the Finite Element Method in a Small Water Area Twin Hull (SWATH) type boat.  In the mentioned load condition, the acceptance criteria established by a classification society must be fulfilled, taking into account the areas where this event affects the structure such as the junction deck, the pontoons and other structural members established by the standard, all this generated by the high pressure loads in the ship's structure in a very short period of time being an element of study in this type of vessels, as long as they are within the range of high speed vessels. Among the main results of this study were the deformations and stresses in the structure obtained under the reference parameters of the classification society.


Author(s):  
Brian Rose ◽  
James Widrig

High temperature piping systems and associated components, elbows and bellows in particular, are vulnerable to damage from creep. The creep behavior of the system is simulated using finite element analysis (FEA). Material behavior and damage is characterized using the MPC Omega law, which captures creep embrittlement. Elbow elements provide rapid yet accurate modeling of pinching of piping, which consumes a major portion of the creep life. The simulation is used to estimate the remaining life of the piping system, evaluate the adequacy of existing bellows and spring can supports and explore remediation options.


1980 ◽  
Vol 23 (186) ◽  
pp. 2005-2012 ◽  
Author(s):  
Takaaki MORIMUNE ◽  
Naomichi HIRAYAMA ◽  
Toshiyuki MAEDA

Author(s):  
Thomas C. Ligon ◽  
David J. Gross ◽  
John C. Minichiello

The focus of this paper is on gaseous deflagration in piping systems and the corresponding implications on piping analysis and design. Unlike stable detonations that propagate at a constant speed and whose pressure-time histories can in some cases be predicted analytically, deflagration flame speeds and pressure-time histories are transient and depend on both the gas mixture and geometry of the pipe. This paper presents pressure and pipe strain data from gaseous deflagration experiments in long and short test apparatuses fabricated from either 2-inch or 4-inch diameter pipes. These data are used to demonstrate a spectrum of measured pressure-time histories and corresponding pipe response. It is concluded that deflagrations can be categorized as either “high” or “slow” speed with respect to pipe response. Slow deflagrations can be treated as quasi-static pressurizations, but high speed deflagrations can generate shock waves that dynamically excite the pipe. The existence of a transition from quasi-static to dynamic response has ramifications in regards to piping structural analysis and design, and a method for predicting the expected deflagration structural response using a semi-empirical flame acceleration model is proposed.


1985 ◽  
Vol 107 (2) ◽  
pp. 148-156
Author(s):  
O. Watanabe ◽  
H. Ohtsubo

The present paper describes a simplified finite element method for analysis of behavior of complex piping systems under elevated temperature. Elastic-plastic-creep deformations of a piping system under a combined moment loading can be analyzed by the present method. The system is idealized by straight and curved beams, and derivation of the finite element equation is based on the force method. The unified constitutive relations are used for creep and plastic behavior, where plastic deformation is treated as a limiting case of creep. The numerical results are compared with previous experimental ones, which verifies the validity of the proposed method. Elastic follow-up problem of a piping system of actually complex configuration is also solved by the present method.


2016 ◽  
Vol 710 ◽  
pp. 127-136
Author(s):  
Johan Maljaars ◽  
Gianfranco De Matteis

Many aluminium structures contain welded and bolted connections that are modeled as one or more equivalent T-stubs – also referred to as tension zone components – for the structural assessment. Knowledge on the structural behavior of such T-stubs is thus essential for proper designs. However, this behavior has never been checked for fire conditions. In this paper, the structural behavior of aluminium T-stubs exposed to fire is studied through a combination of tests, finite element simulations, and theoretical models. A safe and conservative assessment procedure is developed for determining the critical temperature, based on the material deterioration as a function of temperature. This enables engineers and practitioners to determine a conservative value of the fire resistance.


1979 ◽  
Vol 101 (2) ◽  
pp. 142-148 ◽  
Author(s):  
M. T. A-Moneim ◽  
Y. W. Chang

The ICEPEL Code for coupled hydrodynamic-structural response analysis of piping systems is used to analyze an experiment on the response of flexible piping systems to internal pressure pulses. The piping system consisted of two flexible Nickel-200 pipes connected in series through a 90-deg thick-walled stainless steel elbow. A tailored pressure pulse generated by a calibrated pulse gun is stabilized in a long thick-walled stainless steel pipe leading to the flexible piping system which ended with a heavy blind flange. The analytical results of pressure and circumferential strain histories are discussed and compared against the experimental data obtained by SRI International.


Sign in / Sign up

Export Citation Format

Share Document