Mesh Convergence Studies for Thick Shell Elements Developed by the ASME Special Working Group on Computational Modeling

Author(s):  
David P. Molitoris ◽  
Gordon S. Bjorkman ◽  
Chi-Fung Tso ◽  
Michael Yaksh

The ASME Special Working Group on Computational Modeling for Explicit Dynamics was founded in August 2008 for the purpose of creating a quantitative guidance document for the development of finite element models used to analyze energy-limited events using explicit dynamics software. This document will be referenced in the ASME Code Section III, Division 3 and the next revision of NRC Regulatory Guide 7.6 as a means by which the quality of a finite element model may be judged. One portion of the document will be devoted to a series of element convergence studies that can aid designers in establishing the mesh refinement requirements necessary to achieve accurate results for a variety of different element types in regions of high plastic strain. These convergence studies will also aid reviewers in evaluating the quality of a finite element model and the apparent accuracy of its results. In this paper, the authors present the results of a convergence study for an impulsively loaded propped cantilever beam constructed of LS-DYNA thick shell elements using both reduced and selectively reduced integration. A large load is applied to produce large deformations and large plastic strains in the beam. The deformation and plastic strain results are then compared to similar results obtained using thin shell elements and hexahedral elements for the beam mesh.

Author(s):  
Chi-Fung Tso ◽  
David P. Molitoris ◽  
Michael Yaksh ◽  
Spencer Snow ◽  
Doug Ammerman ◽  
...  

The ASME Special Working Group on Computational Modeling for Explicit Dynamics was founded in August 2008 for the purpose of creating a quantitative guidance document for the development of finite element models used to analyze energy-limited events using explicit dynamics software. This document will be referenced in the ASME Code Section III, Division 3 and the next revision of NRC Regulatory Guide 7.6 as a means by which the quality of a finite element model may be judged. One portion of the document will be devoted to a series of element convergence studies that can aid designers in establishing the mesh refinement requirements necessary to achieve accurate results for a variety of different element types in regions of high plastic strain. These convergence studies will also aid reviewers in evaluating the quality of a finite element model and the apparent accuracy of its results. In this paper, the authors present the results of a convergence study for an impulsively loaded propped cantilever beam constructed of LS-DYNA hexahedral elements using both reduced and selectively reduced integration. Three loading levels are considered; the first maintains strains within the elastic range, the second induces moderate plastic strains, and the third produces large deformations and large plastic strains.


Author(s):  
Gordon S. Bjorkman ◽  
David P. Molitoris

The ASME Task Group on Computational Modeling for Explicit Dynamics was founded in August 2008 for the purpose of creating a quantitative guidance document for the development of finite element models used to analyze energy-limited events using explicit dynamics software. This document will be referenced in the ASME Code Section III, Division 3 and the next revision of NRC Regulatory Guide 7.6 as a means by which the quality of a finite element model may be judged. One portion of the document will be devoted to a series of element convergence studies that can aid designers in establishing the mesh refinement requirements necessary to achieve accurate results for a variety of different elements types in regions of high plastic strain. These convergence studies will also aid reviewers in evaluating the quality of a finite element model and the apparent accuracy of its results. In this paper the authors present the results of a convergence study for an impulsively loaded propped cantilever beam constructed of LS-DYNA thin shell elements using both reduced and full integration. Three loading levels are considered; the first maintains strains within the elastic range, the second induces moderate plastic strains, and the third produces large deformations and large plastic strains.


Author(s):  
H Shahverdi ◽  
C Mares ◽  
J E Mottershead

In this paper the results of a finite element model updating exercise, carried out on closely axisymmetric aeroengine casings, are presented. The correction of the combustion chamber outer casing (CCOC) model is considered and, after assembly with the turbine casing (TC), the quality of the resulting combined model is investigated. The dynamics of both casings is characterized by pairs of close modes, which may be separated by fictitious point mass modifications. The natural frequencies and mode shapes of the fictitiously modified CCOC are determined from receptances obtained from the CCOC in its original (unmodified) configuration. The modifications are shown to improve the understanding of both the CCOC and the system formed by connecting the CCOC to the TC. A particular problem is revealed when model updating is applied to the CCOC. An analysis of the mode shapes locates a modelling error on an inner shell of the structure but it is found that the finite element model is unable to be parameterized for the correction of two pairs of wrongly ordered predicted modes. This can only be achieved by firstly correcting the ‘structure’ of the model itself. The main error is found to be a geometrical inaccuracy, and, when this is put right, the sequence of the modes is corrected. Model updating is then applied to the thickness of certain shell elements and the CCOC is found to be in excellent agreement with measured data, as is the complete model formed from the two models of the CCOC and the TC together.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


1985 ◽  
Vol 107 (4) ◽  
pp. 349-354 ◽  
Author(s):  
J. S. Strenkowski ◽  
J. T. Carroll

A finite element model of orthogonal metal cutting is described. The paper introduces a new chip separation criterion based on the effective plastic strain in the workpiece. Several cutting parameters that are often neglected in simplified metal-cutting models are included, such as elastic-plastic material properties of both the workpiece and tool, friction along the tool rake face, and geometry of the cutting edge and workpiece. The model predicts chip geometry, residual stresses in the workpiece, and tool stresses and forces, without any reliance on empirical metal cutting data. The paper demonstrates that use of a chip separation criterion based on effective plastic strain is essential in predicting chip geometry and residual stresses with the finite element method.


2013 ◽  
Vol 554-557 ◽  
pp. 484-491 ◽  
Author(s):  
Alexander S. Petrov ◽  
James A. Sherwood ◽  
Konstantine A. Fetfatsidis ◽  
Cynthia J. Mitchell

A hybrid finite element discrete mesoscopic approach is used to model the forming of composite parts using a unidirectional glass prepreg non-crimp fabric (NCF). The tensile behavior of the fabric is represented using 1-D beam elements, and the shearing behavior is captured using 2-D shell elements into an ABAQUS/Explicit finite element model via a user-defined material subroutine. The forming of a hemisphere is simulated using a finite element model of the fabric, and the results are compared to a thermostamped part as a demonstration of the capabilities of the used methodology. Forming simulations using a double-dome geometry, which has been used in an international benchmarking program, were then performed with the validated finite element model to explore the ability of the unidirectional fabric to accommodate the presence of interlaminate cabling.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


1990 ◽  
Vol 112 (3) ◽  
pp. 287-291 ◽  
Author(s):  
F. A. Kolkailah ◽  
A. J. McPhate

In this paper, results from an elastic-plastic finite-element model incorporating the Bodner-Partom model of nonlinear time-dependent material behavior are presented. The parameters in the constitutive model are computed from a leastsquare fit to experimental data obtained from uniaxial stress-strain and creep tests at 650°C. The finite element model of a double-notched specimen is employed to determine the value of the elastic-plastic strain and is compared to experimental data. The constitutive model parameters evaluated in this paper are found to be in good agreement with those obtained by the other investigators. However, the parameters determined by the numerical technique tend to give response that agree with the data better than do graphically determined parameters previously used. The calculated elastic-plastic strain from the model agreed well with the experimental strain.


Author(s):  
Raed E. El-Jawahri ◽  
Jesse S. Ruan ◽  
Stephen W. Rouhana ◽  
Saeed D. Barbat

The Ford Motor Company Human Body Finite Element Model (FHBM) was validated against rib dynamic tension and 3-point bending tests. The stress-strain and moment-strain data from the tension and bending simulations respectively were compared with human rib specimen test data. The model used represented a 50th percentile adult male. It was used to compare chest deflection and chest acceleration as thoracic injury indicator in blunt impact and belted occupants in front sled impact simulations. A 150 mm diameter of 23.4 kg impactor was used in the blunt impact simulations with impact speeds of 2, 4, and 8 m/s. In the Front sled impact simulations, single-step acceleration pulses with peaks of 10, 20, and 30 g were used. The occupants were restrained by 3-point belt system, however neither pretensioner nor shoulder belt force limiter were used. The external force, head acceleration, chest deflection, chest acceleration, and the maximum values of Von Mises stress and plastic strain were the model outputs. The results showed that the external contact force, head acceleration, chest deflection, and chest acceleration in the blunt impact simulations varied between 1.5–7 kN, 5–28 g, 18–80 mm, and 8–40 g respectively. The same responses varied between 7–24 kN, 13–40 g, 15–50 mm, and 16–46 g respectively in the front sled impact simulations. The maximum Von Mises stress and plastic strain were 50–127 MPa, and 0.04–2% respectively in the blunt impact simulations and 72–134 MPa, and 0.13–3% respectively in the sled impact simulations.


2013 ◽  
Vol 662 ◽  
pp. 632-636
Author(s):  
Yong Sheng Zhao ◽  
Jing Yang ◽  
Xiao Lei Song ◽  
Zi Jun Qi

The quality of high speed machining is directly related to dynamic characteristics of spindle-toolholder interface. The paper established normal and tangential interactions of BT spindle-toolholder interface based on finite element contact theory, and analysed free modal in Abaqus/Standard. Then the result was compared with the experimental modal analysis. It shows that the finite element model is effective and could be applied in the future dynamic study of high-speed spindle system.


Sign in / Sign up

Export Citation Format

Share Document