Flow Around a Surface-Mounted Finite Square Prism With a Splitter Plate

Author(s):  
Ayodele R. Ogunremi ◽  
David Sumner

The effect of a wake-mounted splitter plate on the flow around a surface-mounted finite-height square prism was investigated experimentally in a low-speed wind tunnel. Four square prisms of aspect ratios AR = 9, 7, 5 and 3 were tested at a Reynolds number of Re = 7.4×104. The relative thickness of the boundary layer on the ground plane was δ/D = 1.5 (where D is the side length of the prism). The splitter plates were mounted vertically from the ground plane on the wake centreline, with a negligible gap between the leading edge of the plate and rear of the prism. The splitter plate heights were always the same as the heights of prisms, while the splitter plate lengths were varied from L/D = 1 to 7. Measurements of the mean drag force were obtained with a force balance, and measurements of the vortex shedding frequency were obtained with a single-sensor hot-wire probe. Compared to previously published results for an “infinite” square prism, a splitter plate is less effective at drag reduction, but more effective at vortex shedding suppression, when used with a finite-height square prism. Significant reduction in drag was realized only for short prisms (of AR ≤ 5) when long splitter plates (of L/D ≥ 5) were used. In contrast, a splitter plate of length L/D = 3 was sufficient to suppress vortex shedding for all aspect ratios tested. Compared to previous results for finite-height circular cylinders, finite-height square prisms typically need longer splitter plates for vortex shedding suppression.

2014 ◽  
Vol 136 (8) ◽  
Author(s):  
J. F. McClean ◽  
D. Sumner

The flow around a surface-mounted finite-height square prism was investigated using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re = 7.3 × 104 for prism aspect ratios of AR = 3, 5, 7, 9, and 11 and incidence angles from α = 0 deg to 45 deg. The thickness of the boundary layer on the ground plane relative to the side length was δ/D = 1.5. Measurements of the vortex shedding frequency were made with a single-component hot-wire probe, and measurements of the mean drag and lift forces were obtained with a force balance. For all aspect ratios and incidence angles, the mean drag coefficient and Strouhal number were lower than those of an infinite prism, while the mean lift coefficient was of nearly similar magnitude. As the aspect ratio was increased from AR = 3 to 11, the force coefficients and Strouhal number slowly approached the infinite-square-prism data. The mean drag coefficient and Strouhal number for the finite prism were less sensitive to changes in incidence angle compared to the infinite square prism. The critical incidence angle, corresponding to minimum mean drag coefficient, minimum (most negative) mean lift coefficient, and maximum Strouhal number, shifted to a higher incidence angle compared to the infinite square prism, with values ranging from αcritical = 15 deg to 18 deg; this shift was greatest for the prisms of higher aspect ratio. The behavior of the force coefficients and Strouhal number for the prism of AR = 3 was distinct from the other prisms (with lower values of mean drag coefficient and mean lift coefficient magnitude, and a different Strouhal number trend), suggesting the critical aspect ratio was between AR = 5 and AR = 3 in these experiments. In the wall-normal direction, the power spectra for AR = 11 and 9 tended to have weaker and/or more broad-banded vortex shedding peaks near the ground plane and near the free end at α = 0 deg and 15 deg. For AR = 7 to 3, well-defined vortex shedding peaks were detected along the entire height of the prisms. For AR = 11 and 9, at α = 30 deg and 45 deg, vortex shedding peaks were absent in the power spectra in the upper part of the wake.


Author(s):  
John F. McClean ◽  
David Sumner

The flow around a surface-mounted square prism of finite height was investigated experimentally using a low-speed wind tunnel. Of interest were the effects of aspect ratio and incidence angle on the mean aerodynamic forces and vortex shedding. Compared to the case of the “infinite” (or two-dimensional) square prism, the flow around the finite square prism has not been extensively studied. The experiments were conducted at a Reynolds number of Re = 7.2 × 104 for aspect ratios of AR = 3, 5, 7, 9, and 11 and incidence angles of α = 0°, 15°, 30° and 45°. The thickness of the boundary layer on the ground plane relative to the side length was δ/D = 1.5. Measurements of the vortex shedding frequency were made with a single-component hot-wire probe in the wake, and measurements of the mean drag and lift forces were obtained with a force balance. For all aspect ratios and incidence angles, the Strouhal number and the mean drag coefficient were lower than those of an infinite prism, while the mean lift coefficient was of nearly similar magnitude. As the aspect ratio was increased from AR = 3 to 11, the force coefficients and Strouhal number slowly approached the infinite-square-prism data. The behaviours of the mean drag coefficient and Strouhal number with incidence angle were less sensitive compared to the case of the infinite square prism, although a minimum mean drag coefficient, minimum (most negative) mean lift coefficient, and maximum Strouhal number were found at α = 15°. The reduced sensitivity to incidence angle is attributed to the complex three-dimensional flow over the free end of the prism and the downwash flow that enters the near wake. The behaviour of the force coefficients and Strouhal number for the prism of AR = 3 was distinct from the other prisms (with lower values of drag coefficient and lift coefficient magnitude, and a different Strouhal number trend), suggesting the critical aspect ratio was between AR = 5 and AR = 3 in these experiments. In the wall-normal direction, the power spectra for AR = 11 and 9 tended to have weaker and/or more broad-banded vortex shedding peaks near the ground plane and near the free end at α = 0° and 15°. For AR = 7 to 3, well-defined vortex shedding peaks were detected along the entire height of the prisms. For AR = 11 and 9, at α = 30° and 45°, vortex shedding peaks were absent in the power spectra in the upper part of the wake.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Behzad Ghadiri Dehkordi ◽  
Hamed Houri Jafari

Flow over a circular cylinder with detached short splitter-plates is numerically simulated in order to assess the suppression of periodic vortex shedding. A finite-volume solver based on the Cartesian-staggered grid is implemented, and the ghost-cell method in conjunction with Great-Source-Term technique is employed in order to enforce directly the no-slip condition on the cylinder boundary. The accuracy of the solver is validated by simulation of the flow around a single circular cylinder. The results are in good agreement with the experimental data reported in the literature. Finally, the flows over a circular cylinder with splitter-plate in its downstream (off and on the centerline) are computed in Re=40 as a nonvortex shedding case and in Re=100 and 150 as cases with vortex shedding effects. The same simulations are also performed for the case where dual splitter-plates are in a parallel arrangement embedded in the downstream of the cylinder. The optimum location of the splitter-plate to achieve maximum reduction in the lift and drag forces is determined.


Author(s):  
Minter Cheng

Fluid flow across a bluff body can induce a series alternating vortices in the downstream flow field. The vortex flow can produce adverse effects on many engineering applications. A number of studies have shown that the wake splitter plate is one of the means to stabilize the vortex formation process. However, most of the previous studies are confined to cylinders with attached splitter plates. Very few studies investigate the effects of the spacing between the cylinder and the splitter plate on the formation of wake vortices. In the present study, the effects of the splitter plate length as well as the gap distance between the splitter plate and the cylinder on the wake flow behind a cylinder have been studied experimentally for low Reynolds number of 400. Both circular and square cylinders are studied in this research. Four splitter plates with different length, 1 ≤ L/D ≤ 4, have been used and a range of cylinder and splitter plate gap distance, 0 < G/D < 6, have been studied. By using flow visualization technique and hot-film anemometer measurement, detailed measurements of the velocity distribution, the vortex shedding frequency, the wake width, and the wake formation length are carried out in order to get a clear understanding of the flow interference behavior. The experimental results indicate that splitter plates alter the vortex formation process in the wake causing a decrease in vortex shedding frequency. The Strouhal number decreases with increasing the splitter plate length as well as the gap distance between the cylinder and the splitter plate. It is shown that a jump in Strouhal number occurs at G/D of 3 to 6. The jump is splitter plate length dependent, and generally the gap distance at which jump takes place increases as the splitter plate length increases.


Author(s):  
Amber Donaldson ◽  
John C. Vaccaro ◽  
David M. Rooney

Abstract An experimental wind tunnel study was performed to assess the effect of aspect ratio and rotational speed of circular cylinders of varying diameter on the flow patterns behind the cylinders in the presence of a uniform upstream crossflow. Six circular cylinders of constant length but different diameters, producing aspect ratios 6 ≤ AR ≤ 32 were examined at a single upstream velocity such that the Reynolds number varied between 1920 ≤ Re ≤ 10240. Rotational speeds from stationary up to 3600 rpm were applied to the cylinders, so that the maximum relative velocity α = πfD/U∞ = 0.80. Mean velocity profiles were measured three diameters downstream of the cylinder axis at 6 equidistant locations, and PSD power spectral density were generated for 26 equidistant locations along the cylinder, to create a comprehensive record of spanwise variations under all rotational conditions. For the highest aspect ratio tested, the wake velocity profiles were independent of rotational speed at all spanwise locations, whereas at lower aspect ratios, the maximum velocity defect diminished with increasing rotational speed along most of the span and became asymmetric near the free end. Two distinct shedding cells were found only for a cylinder with an aspect ratio of twelve at three relative spin rates of 0.067, 0.27, and 0.4. In cases where only a single cell existed, increased rotational speed produced a higher vortex shedding frequency on a given aspect ratio cylinder.


2012 ◽  
Vol 28 (2) ◽  
pp. 299-308 ◽  
Author(s):  
H.-H. Lee ◽  
J.-J. Miau

AbstractThe phenomenon of Karman-type vortex shedding from finite square cylinders of the aspect ratios 2, 4 and 6 at Reynolds number of 1.9 × 105 were examined with the employment of a three-component force balance to measure the aerodynamic forces. The signals of the lateral force measured were first analyzed by the HHT (Hilbert-Huang Transformation) together with a conditional sampling technique for identifying the time periods during which the vortex shedding frequency component was prominent. Meanwhile, the force measured in the vertical direction was analyzed by the same procedure to identify the events of pronounced unsteady downwash motion induced by the flow over the finite end of the model. Therefore, the unsteady flow motions around a finite cylinder model could be categorized into four patterns. Namely, the patterns 11 and 10 denote the situations of pronounced Karman-type vortex shedding with and without strong downwash motion, respectively; and the patterns 01 and 00 denote the situations of no pronounced vortex shedding with and without strong downwash motion, respectively. The results obtained show that the pattern 00 occupied more than 60% of the time sampled, apparently dominant over the other three patterns, whereas the second popular pattern 10 (Karman type vortex shedding) occupied no more than 30% of the time sampled. Further experiments were made for the square cylinder of the aspect ratio 6, with a hot-wire situated near either side of the cylinder. By analyzing the unsteady lateral forces experienced by the cylinder and the hot-wire velocity data with the data reduction scheme employed, it is unveiled that the Karman-type vortex shedding induced an anti-symmetric, unsteady flow motion around the cylinder, although this component was not the dominant one. On the other hand, it is found that a large portion of the fluctuating energy was resided in the low-frequency component featuring a symmetric unsteady flow motion around the cylinder. This finding further supports the earlier observation that the flow pattern 00 is most commonly seen in the unsteady flow motions around a finite square cylinder.


1995 ◽  
Vol 117 (2) ◽  
pp. 219-226 ◽  
Author(s):  
D. M. Rooney ◽  
J. Rodichok ◽  
K. Dolan

Wind tunnel tests were undertaken at subcritical Reynolds numbers to determine the vortex shedding characteristics behind a pair of finite circular cylinders at distances from one to six diameters apart and at all angles to one another. In addition, individual finite cylinders with aspect ratios 0.67 ≤ L/D ≤ 11.33 were examined to determine the effect of aspect ratio on shedding frequency, and to measure the frequency of the tip vortex when it is present. Aspect ratio was found to be a significant factor in the difference between shedding frequencies of the two cylinders at oblique angles. It was also found that “lock-on” of the two frequencies occurred when longer aspect ratio cylinders were upstream of shorter ones, but not in the reverse case.


Author(s):  
Noorallah Rostamy ◽  
David Sumner ◽  
Donald J. Bergstrom ◽  
James D. Bugg

The flow around surface-mounted finite-height bluff bodies is more complex than the flow around a two-dimensional or “infinite” cylinder. The flow over the free end and the boundary layer flow around the body-wall junction strongly influence the near-wake flow pattern. Streamwise tip vortex structures interact in a complex manner with Kármán vortex shedding from the sides of the body, and are responsible for a downward-directed local velocity field in the upper part of the wake known as “downwash.” A second pair of streamwise vortex structures, known as the base vortices, is found close to the ground plane. Upstream of the body the familiar horseshoe vortex is found. The interactions between the tip vortices, base vortices, and Kármán vortex shedding are strongly influenced by the aspect ratio, AR = H/D (for height, H, and width, D), the Reynolds number, Re, and the relative thickness of the boundary layer, δ/D. The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied in a low-speed wind tunnel using particle image velocimetry (PIV). Cylinders and prisms of AR = 9, 7, 5, and 3 were tested at Re = 4.2 × 104. The bodies were mounted normal to a ground plane and were partially immersed in a turbulent flat-plate boundary layer with δ/D = 1.7. PIV measurements were made above the free ends in three vertical planes at different cross-stream locations (y/D = 0, 0.25, and 0.375). The ensemble-averaged streamlines, turbulence intensity and Reynolds shear stress fields were obtained in these planes. The PIV results provide insight into the separated flow above the free ends, including the effects of AR and body shape. For the finite square prism, the large, separated, recirculating flow region extends into the near-wake. For the finite circular cylinder, this region is smaller and the separated flow reattaches onto the free-end surface. For the square prism of AR = 3, considerable difference is seen in the free-end flow pattern compared to the more slender prisms of AR = 9, 7 and 5. In particular, a cross-stream vortex is formed due to interaction between the separated flow from the leading edge of the prism and the reverse flow over the free end. This vortex is seen in all three planes for AR = 3 but only in the symmetry plane for AR = 9, while for the finite circular cylinder the flow pattern above the free end seems to be the same in all three planes for all aspect ratios, consisting of a cross-stream vortex at approximately x/D = 0.


Sign in / Sign up

Export Citation Format

Share Document