Wake Flow and Vortex Shedding Patterns Behind Rotating Finite Length Cylinders

Author(s):  
Amber Donaldson ◽  
John C. Vaccaro ◽  
David M. Rooney

Abstract An experimental wind tunnel study was performed to assess the effect of aspect ratio and rotational speed of circular cylinders of varying diameter on the flow patterns behind the cylinders in the presence of a uniform upstream crossflow. Six circular cylinders of constant length but different diameters, producing aspect ratios 6 ≤ AR ≤ 32 were examined at a single upstream velocity such that the Reynolds number varied between 1920 ≤ Re ≤ 10240. Rotational speeds from stationary up to 3600 rpm were applied to the cylinders, so that the maximum relative velocity α = πfD/U∞ = 0.80. Mean velocity profiles were measured three diameters downstream of the cylinder axis at 6 equidistant locations, and PSD power spectral density were generated for 26 equidistant locations along the cylinder, to create a comprehensive record of spanwise variations under all rotational conditions. For the highest aspect ratio tested, the wake velocity profiles were independent of rotational speed at all spanwise locations, whereas at lower aspect ratios, the maximum velocity defect diminished with increasing rotational speed along most of the span and became asymmetric near the free end. Two distinct shedding cells were found only for a cylinder with an aspect ratio of twelve at three relative spin rates of 0.067, 0.27, and 0.4. In cases where only a single cell existed, increased rotational speed produced a higher vortex shedding frequency on a given aspect ratio cylinder.

1995 ◽  
Vol 117 (2) ◽  
pp. 219-226 ◽  
Author(s):  
D. M. Rooney ◽  
J. Rodichok ◽  
K. Dolan

Wind tunnel tests were undertaken at subcritical Reynolds numbers to determine the vortex shedding characteristics behind a pair of finite circular cylinders at distances from one to six diameters apart and at all angles to one another. In addition, individual finite cylinders with aspect ratios 0.67 ≤ L/D ≤ 11.33 were examined to determine the effect of aspect ratio on shedding frequency, and to measure the frequency of the tip vortex when it is present. Aspect ratio was found to be a significant factor in the difference between shedding frequencies of the two cylinders at oblique angles. It was also found that “lock-on” of the two frequencies occurred when longer aspect ratio cylinders were upstream of shorter ones, but not in the reverse case.


Author(s):  
Jorge Silva-Leon ◽  
Andrea Cioncolini

Abstract This paper describes an experimental study of the spanwise vortex shedding frequencies from cantilever flexible filaments which are bent (reconfigured) when exposed to air crossflow. At a reduced velocity of approximately U* = 1500 (based on filament diameter) the filaments started to vibrate in the inline direction. Hot-wire anemometry was thus employed to investigate the wake flow of filaments of three aspect ratios (L/D = 38, 80, and 113) at Reynolds numbers Re < 300. Despite the large relative inclination angles between the filament and the flow direction, the vortex shedding frequency measured along the span of the filaments remained close to those of a cylinder in pure crossflow. Moreover, it was found that as the aspect ratio (axial length) of the filaments was increased, vortex shedding lost coherence towards the free end of the filaments, whereas this was not the case for the shortest aspect ratio filament currently tested. This is thought to be due to the interaction between the crossflow vortex shedding and the axial flow component developing along the wake of the inclined filaments. Through comparisons with stiff inclined wires it was confirmed that the spanwise vortex shedding behaviors observed (frequency and coherence) were not modulated by the motions of the filaments.


Author(s):  
Rodolfo T. Gonçalves ◽  
Dênnis M. Gambarine ◽  
Felipe P. Figueiredo ◽  
Fábio V. Amorim ◽  
André L. C. Fujarra

Experiments regarding flow-induced vibration on floating squared section cylinders with low aspect ratio were carried out in an ocean basin with rotating-arm apparatus. The floating squared section cylinders were elastically supported by a set of linear springs to provide low structural damping to the system. Three different aspect ratios were tested, namely L/D = 1.0, 2.0 and 3.0, and two different incidence angles, namely 0 and 45 degrees. The aims were to understanding the flow-induced vibration around single columns of multi-column platforms, such as semi-submersible and TLP. VIV on circular cylinders were also carried out to compare the results. The range of Reynolds number covered was 2,000 < Re < 27,000. The in-line and transverse amplitude results showed to be higher for 45-degree incidence compared with 0-degree, but the maximum amplitudes for squared section cylinders were lower compared with the circular ones. The double frequency in the in-line motion was not verified as in circular cylinders. The yaw amplitudes cannot be neglected for squared section cylinders, maximum yaw amplitudes around 10 degrees were observed for reduced velocities up to 15.


1991 ◽  
Vol 113 (3) ◽  
pp. 604-611 ◽  
Author(s):  
C. Y. Soong ◽  
S. T. Lin ◽  
G. J. Hwang

The paper presents an experimental study of convective heat transfer in radially rotating isothermal rectangular ducts with various height and width aspect ratios. The convective heat transfer is affected by secondary flows resulting from Coriolis force and the buoyancy flow, which is in turn due to the centrifugal force in the duct. The growth and strength of the secondary flow depend on the rotational Reynolds number; the effect of the buoyancy flow is characterized by the rotational Rayleigh number. The aspect ratio of the duct may affect the secondary flow and the buoyancy flow, and therefore is also a critical parameter in the heat transfer mechanism. In the present work the effects of the main flow, the rotational speed, and the aspect ratio γ on heat transfer are subjects of major interest. Ducts of aspect ratios γ=5, 2, 1, 0.5, and 0.2 at rotational speed up to 3000 rpm are studied. The main flow Reynolds number ranges from 700 to 20,000 to cover the laminar, transitional, and turbulent flow regimes in the duct flow. Test data and discussion are presented.


Author(s):  
Rodolfo T. Gonçalves ◽  
André L. C. Fujarra

Experiments regarding vortex-induced vibration on floating circular cylinders with low aspect ratio were carried out in a recirculation water channel. The floating circular cylinders were elastic supported by a set of linear springs to provide low structural damping on the system. Eight different aspect ratios were tested, namely L/D = 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5 and 2.0. These aspect ratios were selected to cover the aspect ratio range of the main offshore circular platforms, such as spar and monocolumn. The aims were understanding the VIM of such platforms; due to this, the cylinders were floating, or m* = 1. The range of Reynolds number covered 2,800 < Re < 55,400. The amplitude results showed a decrease in amplitude with decreasing aspect ratio in both directions. The frequency results confirm a different behavior for cylinders with L/D ≤ 0.5; in these cases, the cylinder free-end effects were predominant. The resonant behaviour was no longer observed for L/D ≤ 0.2. The decrease in Strouhal number with decreasing aspect ratio is also verified. All the results presented here complement the work presented previously for stationary circular cylinder with low aspect ratio presented by Gonçalves et al. (2013), Experimental Study on Flow around Circular Cylinders with Low Aspect Ratio, OMAE2013-10454.


Author(s):  
Jinhai Zheng ◽  
Tongfei Li ◽  
Yixin Yan ◽  
Jinchun Hu

A series of experiments are carried out in a laboratory flume for combined wave-current flows, to investigate the characteristics of vertical structure of current profile in a wave-current co-existing water areas. Changes induced in the mean velocity profiles are considered for a range of wave heights, wave periods, water depths and flow velocities which are based on those typical data in the Yangtze River Estuary, China. Preliminary tests are conducted on the unidirectional current and on the wave alone. These show that the current mean velocity profiles agree well with the logarithmic law, and that the waves are approximated closely by the Stokes’ second-order theory. For the combined wave and current tests, the mean velocity profiles generally differ from those suggested by a linear superposition of wave and current velocities. In the case of waves following a current, the velocity distributions exhibit a relatively greater velocity near the bed and a smaller velocity above a certain depth relative to the logarithmic law, and the maximum velocity is observed at a lower location. In the case of wave opposing a current, the velocity distributions depart from the logarithmic law with a relatively smaller velocity near the bed and a greater velocity above a certain depth. Experimental data can be used to validate the theoretical or mathematical models associated with the combined wave-current motions.


2017 ◽  
Vol 826 ◽  
pp. 363-375 ◽  
Author(s):  
Y. Jin ◽  
L. P. Chamorro

The distinctive pitching of hinged splitters in the trailing edge of elliptic cylinders was experimentally studied at various angles of attack ($AoA$) of the cylinder, Reynolds numbers, splitter lengths, aspect ratios ($AR$) of the cylinder and freestream turbulence levels. High-resolution telemetry and hotwire anemometry were used to characterize and gain insight on the dynamics of splitters and wake flow. Results show that the motions of the splitters contain various dominating modes, e.g. $f_{p}$ and $f_{v}$, which are induced by the mean flow and wake dynamics. High background turbulence dampens the coherence of the regular vortex shedding leading to negligible $f_{v}$. For a sufficiently long splitter, namely twice the semimajor axis of the cylinder, dual vortex shedding mode exists close to the leading and trailing edges of the splitter. In general, the splitters oscillate around an equilibrium position nearly parallel to the mean direction of the flow; however, a skewed equilibrium is also possible with a strong recirculation region. This is the case with cylinders of low $AR$ and high $AoA$, where higher lift and drag occurs. Flow measurements at various transverse locations within the wake of the cylinder–splitter system indicate that the signature of the low-frequency splitter pitching is shifted in the wake in the cases with non-zero $AoA$ of the cylinder. Although the splitter pitching exhibits two dominant vortex shedding modes in various configurations, only the higher frequency is transmitted to the wake.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1872
Author(s):  
Siyu Jing ◽  
Wenjun Yang ◽  
Yue Chen

A high-resolution particle image velocitmetry system is used to investigate the relationship between secondary flow and aspect ratio in a straight channel. Considering the symmetry of open channel flow, the flow parameters in half of the flume are measured. Since the variation of the aspect ratio has a direct impact on the intensity and structure of secondary flows, this study was conducted in a smooth open channel to study the influence of aspect ratio on the structure and strength of secondary flows with aspect ratio change from 3 to 7.5 under supercritical flow condition. Profiles and contour-maps of time-averaged stream-wise and vertical velocities were acquired using precise measuring instruments. The results show that there are several secondary flow cells in the cross section, and their structure affects the velocity distribution and energy distribution, which makes the velocity distribution deviate from the traditional logarithmic distribution, and the maximum velocity occur below the surface. The flow intensity of secondary flows is different under different aspect ratios. Results show great agreement with classical theory.


Sign in / Sign up

Export Citation Format

Share Document