Flow-Induced Vibration of a Cylinder in the Wake of Another of Smaller Diameter

Author(s):  
Md. Mahbub Alam ◽  
An Ran ◽  
Yu Zhou

This paper presents cross-flow induced response of a both-end-spring-mounted circular cylinder (diameter D) placed in the wake of a rigid circular cylinder of smaller diameter d. The cylinder vibration is constrained to the transverse direction. The cylinder diameter ratio d/D and spacing ratio L/d are varied from 0.2 to 1.0 and 1.0 to 5.5, respectively, where L is the distance between the center of the upstream cylinder to the forward stagnation point of the downstream cylinder. A violent vibration of the cylinder is observed for d/D = 0.2 ∼ 0.8 at L/d = 1.0, for d/D = 0.24 ∼ 0.6 at 1.0 < L/d ≤ 2.5, for d/D = 0.2 ∼ 0.4 at 2.5 < L/d ≤ 3.5, and for d/D = 0.2 at 3.5 < L/d ≤ 5.5, but not for d/D = 1.0. A smaller d/D generates vibration for a longer range of L/d. The violent vibration occurs at a reduced velocity Ur (=U∞/fnD, where U∞ is the free-stream velocity and fn the natural frequency of the cylinder system) beyond the vortex excitation regime (Ur ≥ 8) depending on d/D and L/d. Once the vibration starts to occur, the vibration amplitude increases rapidly with increasing Ur. It is further noted that the flow behind the downstream cylinder is characterized by two predominant frequencies, corresponding to the cylinder vibration frequency and the natural vortex shedding frequency of the cylinder, respectively. While the former persists downstream, the latter vanishes rapidly.

Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency fs when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag force over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies f varying between 0.25 and 5 times the natural shedding frequency were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. This drop in the drag coefficient is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag and lift forces over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies varying between 0.25 and 5 times the natural shedding frequency fs were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. The first drop in the drag coefficient, i.e. near f = fs, is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder. This change in vortex shedding pattern manifests itself as a departure from symmetrical shedding, and in a non-zero mean lift coefficient value. The second drop, i.e. near f = 2 fs, has similar characteristics, except that the mean lift coefficient remains at zero.


1983 ◽  
Vol 126 ◽  
pp. 147-165 ◽  
Author(s):  
Hiroshi Sakamoto ◽  
Mikio Arie

Measurements of the vortex-shedding frequency behind a vertical rectangular prism and a vertical circular cylinder attached to a plane wall are correlated with the characteristics of the smooth-wall turbulent boundary layer in which they are immersed. Experimental data were collected to investigate the effects of (i) the aspect ratio of these bodies and (ii) the boundary-layer characteristics on the vortex-shedding frequency. The Strouhal number for the rectangular prism and the circular cylinder, defined by S = fcw/U0 and fcd/U0 respectively, was found to be expressed by a power function of the aspect ratio h/w (or h/d). Here fc is the vortex-shedding frequency, U0 is the free-stream velocity, h is the height, w is the width and d is the diameter. As the aspect ratio is reduced, the type of vortex shedding behind each of the two bodies was found to change from the Karman-type vortex to the arch-type vortex at the aspect ratio of 2·0 for the rectangular prism and 2·5 for the circular cylinder.


Author(s):  
K. F. Luk ◽  
R. M. C. So ◽  
S. C. Kot ◽  
Y. L. Lau ◽  
R. C. K. Leung

An experimental investigation of airfoil vibration due to upstream alternating vortices was carried out in a re-circulating wind tunnel. A circular cylinder with a diameter D = 102mm was positioned upstream of an airfoil (NACA0012), with a chord length c = 200mm and a zero angle of attack placed at a gap distance S, to generate the vortex street. The circular cylinder and airfoil were arranged in tandem and the spacing ratio S/D was varied from 0.5 to 6.5 to investigate the effect of the vortices generated upstream on the vibration of the airfoil. The experiment was carried out in a free stream Re range of 1.6×105 to 2.3×105. The vortex formation region behind a single circular cylinder was measured using a hot wire anemometer and the airfoil dynamic responses were examined using a laser vibrometer. It is found that when S/D is reduced beyond a critical value, there is a rapid drop in vortex shedding frequency and a suppression in airfoil vibration. This critical S/D is found to be the normalized length of the vortex formation region behind the single cylinder. It is hypothesized that the vortex could not be formed at this location within the gap distance in the presence of the airfoil, but instead is formed behind the airfoil. Consequently, as vortex shedding is switched from upstream to downstream of the airfoil, the flow-induced vibration of the airfoil is suppressed at the same time.


2020 ◽  
Vol 328 ◽  
pp. 05006
Author(s):  
Václav Uruba ◽  
Pavel Procházka

The wake dynamics behind a long circular cylinder in cross-flow was studied using the POD method. The temporal parts of POD modes, Chronoses, are subjected to frequency analysis. Five groups of modes are distinguished according to the frequency contents. The low order high energy modes contain the vortex shedding frequency or its harmonics up to 3rd order plus Kolmogorov spectrum. The higher order modes are characterized by combination of Kolmogorov spectrum with the white noise spectrum, its importance grows with the mode order. The very high order modes are characterised by the white noise spectrum only.


2020 ◽  
Vol 68 (5) ◽  
pp. 328-338
Author(s):  
M.G. Arun ◽  
T.J.S. Jothi

The present study experimentally investigates the aerodynamic noise from the flow past a fixed circular cylinder. The cylinders considered for the study have the diameters (d) in the range of 6 to 25 mm while its span length (L) is constant, which is 300 mm. The free stream velocity is varied up to 50 m/s, and the corresponding Reynolds number (based on d) varies up to 8.3 104, thus maintaining the flow past the cylinder in the subcritical regime. The discrete narrowband frequency tones depicting the aeolian tones are noted in the spectra. The results showed that the aeolian tone frequency decreases with an increase in the cylinder diameter and ceases to exist beyond the diameter of 15 mm. The corresponding Strouhal number of these tones is found to be in the range of 0.18 to 0.21, which is in congruence with the vortex shedding frequency in the subcritical regime. The maximum overall sound pressure level for cylinders having tonal noise is higher by around 30 dB compared to the background noise. Directivity studies show that the noise level is higher along the perpendicular direction of the jet flow. A sixth power Mach number scaling of the acoustic spectra shows a good collapse of the acoustic tonal amplitude.


2002 ◽  
Vol 124 (2) ◽  
pp. 452-464 ◽  
Author(s):  
Lionel Mathelin ◽  
Franc¸oise Bataille ◽  
Andre´ Lallemand

This work describes blowing through the whole surface of a porous circular cylinder for the control of the near wake dynamics and the thermal protection of the surface. The flow past the cylinder is numerically studied and the blowing is modeled. Comparisons with experimental data are used for validation. It is shown that the blowing tends to increase the boundary layer thickness, to promote its separation and to decrease the viscous drag induced. Similarly, the convective heat transfer is lowered, and in the case of a nonisothermal blowing, the surface is very effectively protected from the hot free stream flow. The near wake is also affected. The vortex shedding frequency is shown to decrease when blowing occurs and a qualitative model is presented to identify the different mechanisms.


1982 ◽  
Vol 104 (4) ◽  
pp. 518-522 ◽  
Author(s):  
F. Angrilli ◽  
S. Bergamaschi ◽  
V. Cossalter

In this paper the influence of a wall on vortex shedding frequency, geometrical pattern, and velocity field are investigated. Frequency measurements were carried out with three circular cylinders at Reynolds numbers of 2860, 3820, and 7640. Mean and fluctuating velocities at several traverses were also measured at Re = 3820 both for an isolated cylinder and for an arrangement with a gap from the wall equal to one cylinder diameter. The modifications of the wake pattern are shown in several figures. It is also shown that the proximity of the wall induces a slight increase of vortex shedding frequency.


Author(s):  
Efstathios Konstantinidis

The fundamental understanding of the added mass phenomenon associated with the motion of a solid body relative to a fluid is revisited. This paper focuses on the two-dimensional flow around a circular cylinder oscillating transversely in a free stream. A virtual experiment reveals that the classical approach to this problem leads to a paradox. The inertial force is derived afresh based on analysis of the motion in a frame of reference attached to the cylinder centroid, which overcomes the paradox in the classical formulation. It is shown that the inertial force depends not only on the acceleration of the cylinder per se , but also on the relative motion between body and fluid embodied in a parameter called alpha, α , which represents the ratio of the maximum transverse velocity of the cylinder to the free-stream velocity; the induced inertial force is directionally varying and non-harmonic in time depended on the alpha parameter. It is further shown that the component of the inertial force in the transverse direction is negligible for α <0.1, increases quadratically for α <0.5, and tends asymptotically to the classical result as , i.e. in still fluid.


Sign in / Sign up

Export Citation Format

Share Document